
AD-A133 733 RESEARCH IN ADAPTIVE BEAMFORMING FOR SATELLITE _/

COMMUN[CATIONSU) PENNSYLVANIA UNIV PHILADELPHIA HABER ET AL. MAY 83 RADC-TR-83-54 F30602-81-K-0211

UNCLASSIFIED 
F/G 17/2 NL

EommEEEmEIm
EmIlmmmlIIIIIIIIIIIIIII
IIIIEEEIIEEEEEE
EElllllllhlhhE
IIIEEIIEEEEEEE
EEElllEEllhhhE



iiii ._ _I IJ & 8 Il I L .
IV.

- 111.25 II .4 I1.

MICROCOPY RESOLUTION TEST CHART
NmATjOAL B uC Of STAMlDARDS -9$3- A

I

4,



ZI



4k4

tz., z . I..

j . V

IK
'1l



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Iien D4nte___R___

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
IREPORT NUMBER 2. GOT A5 CE ION NO 3F 'NS CATALOG NUMBGER

RADC-TR-83-54 __________________1 i
4. TITLE (and Subtitle) S. TYPE OF REPORT A PERIOD COVERED

Final Technical Report
RESEARCH IN ADAPTIVE BEAMFORMING FOR 1 Nov 81 - 31 Oct 82
SATELLITE COM MUNICATIONS 6. PERFORMING OAG. REPORT NUMBER

N/A
7 . AUTNORr,) . CONTRACT OR GRANT NUMBER( )
Professor Fred Haber Charles Bono
Professor Yeheskel Bar-Ness
Paul Chien-Chung Yeh F30602-81-K-0211
S. PERFORMING ORGANIZATIO NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASKAREA, a ORK UNiT NUMBERS
University of Pennsylvania 62702F

409 Franklin Building, 3451 Walnut Street 45196324

Philadelphia PA 19104

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Rome Air Development Center (DCCR) May 1983
Griffiss AFB NY 13441 13. NUMBER OF PAGES

246
14. MONITORING AGENCY NAME & ADDRESS(If different from Controllng Office) IS. SECURITY CLASS. (of this report)

Same UNCLASSIFIED

IS. OECL ASSI FICATION/ DOWNGRADING

NA
H E DULE

I. DISTRIBUTION STATEMENT of thil Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of th. ebstract entered In Stock 30, if different imom Report)

Same

Is. SUPPLEMENTARY NOTES

RADC Project Engineer: Walter J. Bushunow (DCCR)

It. KEY WORDS (Continue on revee aide If neceeeary amd Identify by block niiiber)

Random Arrays Pointing Vector
Satellite Antennas LMS Interference Canceller

Spatial Filtering Algorithms Steering Phase Error
Hybrid Arrays Reference Generating Loop

20. ABSTRACT (Continue reverse side If neceeary and Identify by block mnmber)

The results of an investigation of adaptive interference cancelling tech-
niques for use with satellite borne arrays of sensors are presented in the
report. A "Hybrid Arrayv utilizing both a pointing vector and an intern-
ally generated reference is analyzed. The steady state and transient
properties of the processor are presented showing speed of response,
signal to interference plus noise ratio, and reduced sensitivity to
pointing errors over schemes heretofore used.

DD I jAN7,2 1473 EDITION OF' I NOV65 IS OBSOLETE UNC\ASSIFIED'
SECURITY CLASSIFICATI N OF THIS PAGE (WNo Date 5JWUrO

\~~



UNCLASSIFIED
SICUPITY CLASSIPICATION OP THIS PAG0E('t Dne Ste..

Also developed is the sensitivity to random amplitude and phase error

in the pointing vector. A means by which the pointing vector can be
obtained utilizing a pilot ground source is described and analyzed.

In addition, analyses are presented on improved methods using only an in-
ternally generatr reference. One scheme is analyzed in which non-
oscillatory weights are obtained even when an imperfect reference is
generated. This analysis is carried out assuming no interference, paral-
leling earlier work on a related scheme in which oscillatory weights were
obtained. A second analysis is presented on a method which corrects the
cause for unstable weights. This anlaysis is carried out with desired
signal, interference, and noise present.

UNCLASSIFIED
SECURITY CLASSIFICATION OP I'-- AGE(1 a Date Eru.



TABLE OF CONTENTS

1. INTRODUCTION ....................... 1

2. TECHNICAL SUMMARY. .................. ... 1

2.1 Hybrid Array Analyses.. ................ 1

2.1.1 Steady State Behavior of Hybrid Array. ........ 2

2.1.2 Transient Behavior of Hybrid Array ....... ... 4

2.1.3 Effect of Random Errors in Pointing Vector on Steady
State Behavior. ................... 6

2.2 Pointing Vector Estimation .. .............. 8

2.3 LMS Interference Canceller with Reference Generator . 9

2.4 Effect of Interference on the Behavior of the LMS Array

with Internally Generated Reference. .......... 10

3. CONCLUSIONS AND RECOMMENDATIONS. .............. 11

REFERENCES. ........ ................. 14

4. Appendix A: Steady State Behavior of Hybrid Array . . . .A-i

Appendix B: Transient Response of the Hybrid Array . . .B-i

Appendix C: Effects of Random Amplitude and Steering Phase
Errors on the Behavior of the Hybrid Array .. C-1

Appendix D: Estimation of the Pointing Vector .. ...... D-1

Appendix E: LMS Interference Canceller Array with Reference
Generating Loop .. ................-1

Appendix F: Effect of Interference on the Behavior of an
1)15 Adaptive Array with Signal Loop .. .... F-i

Accession For

NTIS CA&I -XDTIC TAB 0]
Unannounced 0
Justifcation.... 4

Distribution/_

Avalability Codes
Avail and/or_

Dist Special

LO I I



RESEARCH IN ADAPTIVE BEAMFORMING FOR SATELLITE COM MUNICATIONS

1. INTRODUCTION

Reported below are the results of a study carried out in the in-

terval, November 1, 1981 - October 31, 1982 on adaptive beamforming and

interference cancelling in large sparse satellite-borne arrays. The

application in mind is the uplink of a communication satellite using

beam-switching to ground users who may be close to potential interferers.

In an earlier exploratory study, [1], the use of large sparse arrays was

examined, giving their anticipated benefits and describing their problems.

In brief, the array size is made large to put potential interferer on the

quiescent pattern sidelobes where they can be suppressed effectively it is

made sparse to keep system complexity within bounds. Large size is us-

ually attended by element position uncertainty so that forming accurate

steering vectors toward desired sources becomes a problem; both, beam

placement error and random error in forming the pointing vector phasors

were anticipated. A processing system configuration, including alternative

processing schemes was, nevertheless, found and this became the focus

of the study reported here.

In section (2) below we present a technical summary of the study and

its results. Detailed reports on which this summary is based are given in

the Appendices of this document. Section 3 contains the conclusions and

recommendations for further study.

2. TECHNICAL SUMMARY

2.1 Hybrid Array Analyses

The principal part of our work dealt with the properties of

an array processing scheme which we term the "Hybrid Array". It is a
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composite of the Howells-Applebaum processor which utilizes known direction

of signal arrival, and the Widrow-Compton processor which uses a reference

signal extracted from the incoming field through its known superimposed

spread-spectrum code. This concept was arrived at by first supposing that

rapid beam switching is achieved with a processor that utilizes pointing

vector injection, then, recognizing that such arrays are highly sensitive

to pointing vector errors, ways were sought to overcome the effect of

such errors. The addition of a self-generating reference circuit which

makes use of known signal structure, was conjectured to be one such way.

An alternative scheme which bootstraps a pointing correction was also

conceived, but remains to be analyzed. Analyses and simulations of the

Hybrid Array were carried to determine its steady state and transient

properties, and the improvement it provides when subjected to pointing

error. The latter includes error in orienting the main beam toward the

desired source, and independent phase errors in the pointing vector tend-

ing to defocus the main beam.

2.1.1 Steady State Behavior of Hybrid Array

Appendix A gives the results of the steady state analysis with the

array processor shown in Figure 1, and the principal result shown in

Figure 2. The latter shows the effect on the output signal to noise ratio

(SNR) of adding the reference generating circuit to an Applebaum array

in which the steering vector may be pointed off target. p is a measure of

perfection of the reference generating circuit and c is a measure of the

pointing error. The loss in SNR with pointing error, and the decreasing

sensitivity to pointing error as the reference generator approaches the

ideal, is evident from these curves. With p-1, meaning that the reference

generator perfectly matches the desired signal output so that the residue

Ef (see Figure 1) contains no signal, the effect of pointing error is
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essentially the same as it would be in a focused nonadaptive array. The

Applebaum Array which is a limiting case of the hybrid array with the

lowest value of p is therefore poorer than the Hybrid Array for any

pointing error.

Figures 4 through 8 of Appendix A show the results of computations

carried out with a 7 element array comprised of non-uniformly spaced

elements for a wide variety of conditions. The parameter F representss

the amplitude and phase of the reference relative to the signal component

entering the reference generator; F -l is ideal. Typically, one might

expect the reference amplitude to be a few percent away from ideal and

several degrees off in phase. For such departures from ideal the curves

all show a substantial reduction of sensitivity to pointing error over

the Applebaum Array (the F -0 case). It should be noted that cases of
s

multiple interferers and interference inside the main lobe of the quies-

cent array are included in these results.

The observed behavior can be explained by examining the analytical

results. Without reference, the array processor treats the desired signal

as interference when pointing is inaccurate. With perfect reference, the

mechanism which marks the incoming signals for suppression (the co-

variance matrix of the array element outputs, less a constant times

the covariance matrix of the desired signal alone) has the signal component

removed by the action of the reference. As a consequence there is no

tendency to suppress it when there is pointing error, though there is the

normal loss that one would encounter in a miss-aimed conventional beam-

forming array. With imperfect reference, some vestige of signal remains

in the suppression mechanism. The tendency to suppression is blunted but
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not totally eliminated. The conclusion to be drawn form these results is

that the Hybrid Array is a significant improvement over the directionally

constrained array though it may fall short of ultimate perfection as it

stands.

2.1.2 Transient Behavior of Hybrid Array

The results of analysis and simulation of the transient behavior of

the Hybrid Array are given in Appendix B. Because there are two filters in

the Hybrid Array, one in the sidelobe canceller weight setting loop and

one in the reference generator, two coupled set of differential equations

result. Both filters are assumed to be of first order in this analysis.

By assuming that the we.,J. setting loop is much slower than the re-

ference generator, one set of equations can be solved without involving

the other. The result is that a single set of first order linear differ-

ential equations with time variable coefficients is obtained for the

time variable weights in the sidelobe canceller. Explicit solution of

the output transient SINR for an 14-element array remains to be

carried out. We have however dealt more completely with the two-element

array. The instantaneous values of the single complex weight was obtained

in this case. From this, one can with some calculation determine the

response as a function of time.

Simulations were carried out on the two-element array with X/2 spacing

assuming a signal and one interferer present. Results were obtained with

and without noise. The signal was taken to be modulated with a spread

spectrum code and the interference was taken to be a pure sinusoid. The

array processor was assumed perfectly synchronized to the spectrum spreading

code so that the transient behavior observed concerns only the response of
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the weight setting loop and the reference generator. Runs were made

with various sets of parameter~values, input amplitudes, and pointing

angles. Parameter values could be found with which convergence of the

-* signal to interference (and noise, where applicable) ratio occurs in

a fraction of the bit interval provided the pointing angle is not greatly

in error. We found, for instance, that pointing errors up to 5 0 could be

0tolerated but with a 20 error convergence was slowed to the point where

the output signal to interference ratio never reaches an adequate level.

In our simulations idealized signal pulses are used with zero rise

time. Clearly the filter in the reference generator will not follow such

an input so that at the beginning of each signal polarity reversal a sub-

stantial difference exists between signal input and output of the reference

generator. This reflects itself as a sudden drop in signal to interference

ratio of the array output. The processor overcomes this effect in less

than half the pulse interval in the examples simulated, but this effect

will reduce the receiver output quality. The loss can be overcome by an

increase in transmitted power of the order of 3dB. Or, the weight obtained

at the end of the first signal interval can be frozen for the duration of

the transmission. The latter approach may, however, not be acceptable in

the case of. blinking interferers where nulls may have to be moved during

the brief interval of a users on-time.

As a check on the analytical work, comparisons were made between the

transient weight variation obtained by analysis and by simulation. The

results matched very well suggesting that certain approximations used in

the analysis are valid.
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2.1.3 Effect of Random Errors in Pointing Vector on Steady State
Behavior

In Appendix C an analysis is reported on the effect of random phase

and amplitude errors on the steady state signal to interference plus noise

ratio of the Hybrid Array. The analysis reported previously [1] on the

effect of pointing error was concerned with correlated deviations in the

phases of the pointing vector components which result in a shift of the

direction of focus. This sort of error will occur where there is un-

certainty in the signal arrival direction. For the case treated now the

direction of arrival is assumed known correctly but the amplitudes and

phases of the components of the pointing vector generated by the processor

are assumed subject to independent errors. Such errors may be a consequence

of circuit inadequacies, quantization errors when digital processing is done,

and element position uncertainties. In section 2.2 below we will discuss

an analysis of a method for estimating the pointing vector by calibrating

to a pilot station then steering to the desired ground user. It is

inevitable that this estimation procedure, like any other such procedure,

is less than perfect and the principal point of that study is to find the

error in the pointing phases so determined.

Results were obtained from which the SINR as a function of phase

and amplitude standard deviations can be obtained; the reference generator

quality parameter, Fs, and the number of elements, N, are principal para-

meters in the results. The analysis was carried out for a version of

the Hybrid Array derived from a variant of the Applebaum Array in which

the signal output magnitude is not constrained (See Figure 2 of Appendix

C for this version; the version based on the constrained Applebaum

Array is shown in Figure 1 of Appendix C.). Calculations were carried out
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f or the ratio of mean signal power output to mean noise power output

(i.e., interference was not included) as a function of the standard

deviation of amplitude and phase for arrays of 7, 30, and 100 elements

and for values of F ranging from 1 (perfect reference) to 0 (no re-
5

ference, identical to Applebaum Array). The results shown in Figures

3-8 of Appendix C were similar to those obtained for the case of error

in pointing.

With no reference the loss of SNR is substantial and with perfect

reference the loss is zero. With reference within 5% in amplitude and

100 in phase the loss is generally small enough to be acceptable in the

case of the 7 element array. Of great interest, though, is the effect

of increasing the number of array elements. The sensi:ivity to the

random errors increases with increases in number of array elements. In

particular, in the case of a 30 element array, the loss is substantial

unless the reference generator is close to perfect, or the errors in

phase and amplitude are very small. We point out though that the im-

provement over the Applebaum Array is great in all cases of random pointing

error.

Because the analysis was carried out for the unconstrained version

of the Hybrid array (as shown in Figure 2 of Appendix C) we compared

calculated results for SNR of the 7 element array for unconstrained and

constrained versions (the latter as in Figure 1 of Appendix C). The

differences were found to be only slight so that we are inclined to view

the other results obtained as being approximately applicable to both

arrays.
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2.2 Pointing Vector Estimation

We examined a method for estimating the pointing vector to

a desired source when interferers may be close to the desired source and

the array element positions are not perfectly known. The procedure is

based on the beamforming and scanning processes. The analysis of the

method appears in Appendix D, below.

First, the array generates a pointing vector at the reference beacon

by the use of a reflector antenna. The assumption is made that interferers

are seen by this antenna only through its sidelobes and that sidelobe

levels are reasonably low. The pointing vector is determined by correlating

array outputs with the output of the reflector antenna. The vector obtained

in this way has a bias caused by some residual interference at the reflector

antenna output correlating with the interference at array element outputs.

There is also a random component which is averaged out if the integration

time is long enough. Analysis shows that both of these errors can be

treated as random phase errors. For integration time long enough, the

standard deviation of those random phase errors is about 5xlO -4 radian if

there is one interferer with the same power as the beacon source and if

the sidelobe reduction is 30dB.

The second step is to steer the array from the beacon source to the

desired ground source by using the information on angular displacement

between them and the imperfect information on array element positions. The

total error in the pointing vector aimed at a desired user is the sum of

the error in beamforming and that in steering. For a seven element lOX

Hybrid Array with Fs=0.95 and SNR - 10 at input, the tolerance of element

position is about 0.44N for IdB output SINR loss if the error in beamforming

-4
~on the beacon is 5x10 - radian. If the error induced in steering can be

eliminated, the error of 5x10 radians causes a negligible loss in SINR

for F 0.95e
- 1 0 ° .
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2.3 LMS Interference Canceller with Reference Generator

Appendix E contains an analysis of an LMS adaptive array

processor which utilizes a self-generated reference only; that is, one

which does not use direction of signal arrival information. An array

processor to accomplish this is described by Compton (reference [3],

Appendix E) and the problem of weight cycling encountered with this

scheme is analyzed by DiCarlo and Compton (references [4], [5], Appendix

E). We have here analyzed two variants of the Compton scheme both of

which differ from the original in that one element is left unweighted and

limiters in the reference generators are omitted. The difference between

the two schemes analyzed here resides in how the reference generator is

driven.

It is shown in Appendix E that simple and attainable conditions exist

for the weights to converge to a constant value. Also, the SNR for the

two schemes devised is obtained. In one scheme, where the reference genera-

tor is driven by the output of all array elements, the SNR turns out to be

generally low - as low in some cases as the SNR of a single element. The

other realization, in which the reference generator is driven by the out-

put of the weighted elements onlk the output SNR is the full value ex-

pected out of (N-l) coherently combined element outputs; N is the number

of array elements.

We point out that the earlier analyses by DiCarlo and Compton and

the analysis of Appendix E were carried out without interference present.
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2.4 Effect of Interference on the Behavior of the LMS Array
with Internally Generated Reference

As pointed out in section 2.3 above the published analyses on the

subject of adaptive arrays with internally generated reference were

carried out with a single signal and independent element noise only; that

is, interference was not considered. In Appendix F the earlier analyses

are extended to include interferers.

The array processing scheme of DiCarlo (reference [4] Appendix F)

is assumed, along with the phase shift compensation scheme of Bar-ness

(reference [3] App~ndix F). The analytical difficulties which arise with

interference present is associated with the greater complexity of the

K. covariance matrix with more than one signal present. The covariance

matrix of the multiple signals is of rank equal to the number of signals.

The uncoupling of the resulting simultaneous differential equations presented

difficulty though a transformation was found which made it possible to

separate the effects of desired signal and interference.

It is here shown that the phase shift compensation is effective in

the multiple interference case and that weight cycling can be avoided. The

conditions to be satisfied though have not yet been found for the general

case. One expects the conditions and the transient behavior of the array to

be affected by the relative levels of the incoming signals and on their ar-

* rival directions. It was possible however to get an explicit condition for

convergence in the case of a single interferer in addition to the desired

signal.I Further work is to be done on the conditions for convergence in multiple
interference as well as on convergence rates and achievable signal to

interference plus noise ratios.
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3. CONCLUSIONS AND RECOMMENDATIONS

We have seen that the Hybrid array processor is a substantial

improvement in the steady state over an array using only direction of

arrival information when systematic or random errors are encountered in

the focusing phases and amplitudes. The transient analysis also suggests

that if signal structure alone is used to drive the adaption process

the response time will be greater than with the Hybrid Array. We point

out that the Hybrid Array as described here does not suffer from the

weight cycling problem associated with some processors which utilize known

signal structure to self-generate a reference. Though we have not dealt

with the problem of code aquisition time in this work it is to be noted

that the use of a pointing vector, even an approximate one, insures a

reasonably large signal component immediately from which the code

aquisition circuit can more readily extract synchronizing information.

We have analyzed a pointing vector estimation method based on the

use of a pilot source sufficiently out of the way of interferers. We

have derived the estimation errors and with the pointing error sensitivity

of the Hybrid processor, we have demonstrated feasibility of the scheme.

Finally, we have extended previous work on adaptive processing

utilizing signal structure alone to self-generate a reference. Schemes

were devised and analyzed which can be prevented from generating oscillating

weights,. and the behavior of such arrays in the presence of interfering

sources has been analyzed.

The work carried out leads us to make a number of recotmmendations

for further study.



While the Hybrid Array promises significant improvement over earlier

schemes it depends on being able to generate a good reference. What is

needed is either a mechanism for insuring that the self-generated reference

is near perfect or a mechanism for correcting the steering vector. A

possible circuit to accomplish this by the addition of another steering

phase correction feedback loop for a two-elemaent configuration had been

conceived before [1). Variants to accomplish this same end have been devised

since then. These schemes should be further pursued. It may also be

valuable to pursue methods of steering correction in one of the Applebaum

arrays - that is, with processors which do not generate a reference in-

ternally. In addition, or as an alternative, ways should be devised for

controlling the reference generator output through a feedback loop to

minimize the signal component in the residue.

The improvements obtained with the Hybrid Array can be viewed as a

consequence of utilizing more information about the desired signal than

heretofore: tl-,e general problem of how to make optimal use of other bits

of prior information is worth considering. For instance, approximate

location of interferers, or their signal structure may also be known.

There is also additional prior information regarding the desired signal

which is potentially useful - the waveforms and error control codes used,

for instance. This also leads to the question of how to design signals

* which will most effectively aid the array focusing mechanism.

* I We had originally adopted the view that the array size to be used wouldj be sufficiently large to put potential interferers out of the main beam of

the quiescent array pattern.
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We have nevertheless obtained some computational results for the Hybrid

Array assuming interferers well inside the beamvidth. Naturally, the

SINR was found to be adversely affected. There is reason to expect

that the SINR with main-beam interference is to some extent dependent

on array element layout. The problem of element layout was one of the

items considered originally by us but ruled out as a significant factor

for large arrays with no main-beam interference. Since close interfers

cannot be ruled out totally the effect of main-beam interference and

its dependence on element layout ought to be considered.

The schemes with which we have dealt are all narrowband; that is,

they utilize complex non-frequency dependent weights prior to element output

combining. As long as the time displacement of signals seen by the different

elements is small relative to the inverse of the signal bandwidth this

method is satisfactory. Por broadband signals, and/or for wavefronts

arriving at angles very far off array broadside this may not be the case.

Ways of extending the methods here described to wideband signals would be

useful.

One of the principal advantages we see in arrays utilizing directional

information in addition to signal structure information is the potential

for high speed beam switching. We have verified fast convergence of

the Hybrid Array with an interferer present in a particular location.

However, the functioning of the array in a rapidly changing dynamic en-

vironment of multiple desired sources and dispersed blinking interferers

requires further attention. One can imagine a simulation experiment with

such a scenario. Also deserving attention for multiple access applications

is the use of multiple directional constraints in which two or more

simultaneous beams are focused.
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UP-VFRC-9-82 Appendix A

STEADY STATE BEHAVIOR OF HYBRID ARRAYI by
F. Haber, Y. Bar-ness, C. C. Yeh

Abstract

The steady state properties of an adaptive array utilizing prior know-

ledge of both approximate signal arrival direction and signal characteris-

tics are here presented. The method combines the features of a directionally

constrained array and one with a self-generated reference signal. Explicit

results are obtained for output signal, interference, and noise powers

assuming a single interferer is present. The inclusion of a self-generated

reference circuit is shown to reduce the sensitivity to pointing error typical

of arrays utilizing a zero order directional constraint, the improvement being

a consequence of the reduction of the desired signal component fed back to the

sidelobe cancelling circuit. A relationship between the degree of sensi-

tivity reduction and the quality of the reference signal is developed.

Results of computations of signal to interference plus noise ratios for a

7-element 10 wavelength non-uniformly spaced array as a function of pointing

error are presented. These results show the behivior with one interferer

inside and outside the beamwidth of the quiescent array, and with multiple

interferers, for various degrees of perfection of the reference generating

circuit. In all cases the computations confirm that the otherwise severe

effects of small pointing errors are substantially reduced.

This research is supported by Rome Air Development Center under Contract

No. F30602-81-K-0211.
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UP-VFRC-9-82

INTRODUCTION

Adaptive arrays suitable for use in conmmunicat ion systems can be

categorized according to the prior information utilized to distinguish

desired from undesired signals. One scheme described by Applebaum and

Chapman [1] is suited to point-to-point communication where direction of

signal arrival is known; the directional information, through an input

steering vector, constrains the array gain in this direction, maximally

rejecting other, unwanted sources. Another scheme, based on a concept

by Widrow, et. al. [21 recognizes the desired signal via an externally

supplied reference. For communication use, an extension of the latter

was made by Compton, et. al. [ 3, 41 wherein the reference is internally

generated utilizing some prior known signal structure information

(e.g., the spread spectrum code superimposed on the signal).

One of the principal shortcomings of the first method, the directionally

constrained method, is that small pointing errors result in large losses

in the output signal to interference plus noise ratio (SINR). An analysis

of this effect was made by Compton [5] and was reinforced by results obtained

by us 16). Unfortunately, pointing error is endemic in many applications

where direction of arrival is ostensibly known. The second method is

however not free of difficulties among which are problems relating

to imperfect reference generation [7, 81. Furthermore, one expects better

transient response using, the directionally constrained scheme becauseI a substantial signal power becomes immediately available at the array output

on injection of an approximately correct steering vector.

*With a constraint on the gain in a chosen direction the array is said to
be zero order directionally constrained [1).
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A comparison study of these two methods (91 suggested that the two

can be made to complement one another and has led us to look at hybrid

schemes which take advantage of both kinds of prior information--

directionality and signal structure. We present below analyses and

computational results of the steady state properties of one such scheme

as defined in Figure 1. The array processor is represented in a form

similar to that in Applebaum and Chapman [1, Figures 2 and 4] with the

addition of a reference generating loop. We treat the case of narrow-

band information bearing signals for both desired and undesired arrivals

so that steering ana nulling operations are carried out by control of

amplitudes and phases of s and y respectively, at band center. Further-

more, we assume the reference generating circuit is operating in the

synchronous mode with respect to the desired signal; the acquisition circuit

for code timing is therefore not shown.
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2. ANALYSIS

The array system under consideration is shown in Figure 1. Output

signals from the array elements are represented by the complex vector

J

v(t) = a (t)2d + B (t)si j + n(t) (1)
j~l

where pd is the arrival phase vector of the desired signal comprised of N unit

amplitude components, ai(t) is its complex envelope; si is the arrival phase

vector of the Jth interference signal, a(t) is its complex envelope;

and n(t) is the complex noise envelope vector, the components of which

are assumed independent. If, for instance, the elements are arranged

along the x-axis at positions xi, i = 1,2,...N, a desired signal arriving

as a plane wave with its plane of arrival at an angle ed relative to the

x-axis induces signal components

a(t)sdi = c(t)exp(jkxicosed), i = 1,2 .... N (2)

in the array elements. Sdi m exp(jkxicosed) is the i-h unit amplitude component

thof ad" The rf wave at the i-h element is given by vi(t)exp(jwt + 0). The de-

sired signal component at the ith element, as represented by (2), has the
carrier exponential suppressed.

The beamformer defined by the steering vector, s* in Figure 1 generates an

output given by the inner product of s* and v given by (1); that is,

* 1*
e - s v (3)

(the time variable in em and v is omitted but implied). The output of the
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system is given by

Te - y - u (4)
eo m --

where y is the weight vector on the sidelobe canceller and

u = Av (5)

A is an (N - 1) x N matrix of rank (N - 1) chosen such that As = 0; and, as a

consequence, such that signals arriving with direction vector s do not con-

tribute to u. (3), (4), and (5) together give

e s v - y Av * - A Z v (6)

Following Applebaum and Chapman (1] the equivalent weight vector w is defined by

T
e = w v (7)

so that from (6)

w =s* ATy (8)

Because of the way A is chosen this weight vector w insures the response in

the direction of s. That is, premultiplying (8) by T we have

s w-s - sTA y N (9)

A-6



In (9) we have used sTATy - yTAs - 0, and sT s N, the number of elements.

The weight vector of the sidelobe canceller is formed via a circuit

which typically approximates the LMS algorithm using steepest descent

search. In the steady state that weight vector is given by

y= g u*(e° - er) (10)

where er is the reference signal as identified in Figure I and g is the

gain in the weight setting loop. The overbar stands for expected value.

The reference signal is assumed formed from the array output e byo

despreading using the desired signal's spread spectrum code, filtering,

and respreading using the same code. In the process, interferers in

whatever form they initially appear (i.e., wideband or narrowband) are

reduced to a broadband low power spectral density noise. e is thereforer

viewed as being comprised of a component closely similar to the desired

signal and a noise component, denoted n ; that is,

r

e =Fe +n (1r seod r

where eod is the signal component of e and F is an operator representing

the effect of the bandpass filter on the desired output signal component.

We will specialize it in our work to a complex constant implying a phase

and amplitude shift only.
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Utilizing these preliminaries, the equivalent weight vector from which

the output response is determined by (7), is shown in Appendix A to be givenI by (see A-12, A-13),

- w = 1* (12)

where

M- M- jl 2 Fs Md  (13)

and
N

- TM (14)

M and Md are defined by (15) and (16) below. When F =0 the hybrid array re-d s

duces to the conventional directionally constrained array and the weight

vector as given by (12) reduces to w = -M s

We now examine the implications of the change brought about by inclusion

of the reference generating circuit. From (1) we write for the covariance

matrix of the inputs

M vvT M a2 Md + I B!MIJ + M (15'

where M =ss (i.)
d !!d--d

*T

M Ij 1(17)
and Ij Ii j

* T 21
M = nn = (i)

n -- n

(15) is obtained using the assumed independence of all separately arriving

signals (desired, undesired and noise) and the independence among the noise

components. With M1 as given by (13) we see that the effect of the self-

generated reference signal is to alter the contribution of the desired signal

component to the covariance matrix by a factor (1-F s). When F = 1, M has,

in fact, no component due to signal. We point out that the field

environment is communicated to the array processor via the matrix
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M in the conventional directionally constrained array. The tendency of

the array processor is to suppress all signals recorded in the matrix M--

except for the signal coming from the constraint direction defined by the

steering vector s. If s is different from the direction of the desired

signal represented by .d the processor deals with it as if it were an unwanted

signal, suppressing it substantially even for small differences of angle.

The effect of removing the desired signal contribution to M, or of reducing

its influence on M by making F close to unity, is to reduce the tendency

to suppression of the desired signal when s and Ed are not coincident. This

may be seen most easily by imagining only a single signal present with

arrival direction inherent in d and with F - 1. Then

M It= c21
n n

and the weight vector is from (22)

The weight vector is identically that of a conventional beamformer and the

desired signal will produce an output

eo(sig) = T (20)
pattern eoEsig

The pattern of e as a function of angular difference between pointing

vectors and s will have the usual mainbeam beamwidth of approximately WX/

where Z is the linear dimension of the array. Ile later show computational

results bearing out this effect.
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We now return to (12) for the purpose of putting it into a more explicit

form in terms of the signal, interference, and noise components. The result

will allow us to draw additional conclusions about the array behavior including

the effect of imperfect elimination of the signal component from M. Using (13)

and (15) we have, assuming a single interferer denoted B(t)s1 ,

M1 ='(1 - F )I 2 IMd + 16 21M + C2I

a n [(l - Fs)ydMd + y1 MI + I] (21)

l2 j/2  2
where Yd = I212 measures the SNR of the desired signal and y, - 1B 2 /an

measures the SNR of the undesired signal at each element. It is shown in

Appendix B that the inverse of (21) is given by

F

- 1) (lFs) d (Y IN+)Md- (l-Fs)YdYI (MdMI+MIMd)+YI [ (l-Fs) YdN+l)]MIMi  2 1- TI -I *12 (22)

a2  
-[ (lM-Fs)ydN+1l (yIN+I)-(l-Fs)YdYI 1I- 2 (22)

To see the effect of imperfect reference generation we specialize (22) to the

case of desired signal plus noise alone so that yl 0. Then (22) becomes

1T 1 (l-F s)Y d Md

M . (23)
a -2 - (1 - Fs ) d N + 1
n s

The weight vector is then, using (12),

~2 t- klMdsE (24"I an
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where

k (r - F)Yd (25)1 (1l- F)ydN+l1

The output signal to noise ratio is

T * * 2
E: Ea~d(s - klMd

SNR - T 2E[In (s - klMdS* )I 2 ]

T **2
Id(s - klMds )I= 'd s - klMdS- 2

II. I represents the norm of the vector inside the bars.

T*
Making use of (16) and of the fact that - = N the numerator of the

ratio in (26) becomes

It - kzNI 2Iqs*I 2

and the denominator of that ratio becomes

N[I + (It - kiNI2- ) Ig I/N 2 ]

so that (26) can be written

I1 - klN121T * 2
SNR = yd 1 1

2 - 1 (27)N[I + (11 k kN 2 -)I Td *12IN 2,

This result embodies both the degree of imperfect pointing and imperfect

reference. For the case where the reference generator is perfect kI = 0

so that
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SN di 15T 2 (28)

The maximum of this quantity is obtained when pointing at and in this

case I T N2 so that

SNR - Nyd (29)

an expected result.

For the case where - s, but with imperfect reference (27) also gives

SNR - NYd

just as one would expect from perfect steering.

The pointing error is embodied in the quantity I s 12 which, as stated

above, has a maximum value given by N2 when s = . A convenient indicator

of pointing error is obtained by writing

T*2

= (1 - E)N (30)

with 0 < E < I being the measure of pointing error. Using (30) and, for

brevity, denoting

i2
11 k1NJ2 12 (31)

I(1 - Fs)YdN + 12

where k is given by (25), (27) becomes

SNR - y N (- ) (32)

d + (1 - )P
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The right factor in brackets which we might term the normalized SNR shows

how the SNR varies with pointing error as measured by c, for degrees

of imperfection in the reference signal as measured by P. We show in

Figure 2 the behavior of that factor denoted by

r = - ( - )p (33)C+ (1 - E)P

for p in the range (0.01, 1). The larger values of p represent closer

tracking by the reference generator and vice-versa. We see here clearly

the increasing sensitivity to pointing error as p gets smaller. If, for

instance, F. = 0.9, N - I0, yd 1 10 we get p = 10-2 . It should be noted

that with F M 0, i.e. when no reference is used the corresponding value ofs

p is about 10-4 implying greater pointing error sensitivity than for any of

the cases shown in Fig. 2. These results are further confirmed in Section

3 where computations are carried out in the presence of both noise and in-

terference.

For further insight into the behavior of the hybrid processor we ex-

amine the output signal to interference plus noise ratio (SINR) with an

interferer present. We will, however, now assume a perfect reference; i.e.,

F s 1. The inverse covariance matrix given by (22) now becomes
(I YI MI

M1  2(i _iN(I (34)

n

and the weight vector is now

wuK m -s -kM--

!t- 2n
a
n

1
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where

k (35)

Output signal (S), interference (I) and noise (No) are obtained by

T T T
premultiplying (34) by a -d , 8 sI, and nrespectively. The output SINR

is defined by

- E (IS 2o) 
(36)S I N = 2 1lzl ) 2~ o z

E(11- 0 + E(IN 01

The signal output power is

2

n
2*TzT *T *T

a { IT *12 - 2k2Reis * ( Id)(S s)] (37)
- -I. d-- 2

n

+ k2 1  )( *T 22s slz sI )2

If pointing is accurate so that S E d (37) becomes

21 
2  *T 2 2 1 *Ts 4

E(IS 
(N  2k2N d s-I + k 2  

(38)

The noise output power is

2 *T*

E(IN 0 1
2) 4 E EInT(s - k 2 S-EI- 1T

(39)

-2 - (2k2 - k 2N) Is. T Y

n
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and the interference output power is

E(11 12) - 7a, I T~ -k T 1 t 2  (40)

an

2 2 N

n

Note from (35) if the interference to noise ratio y and/or the number of

elements N is large enough to make yIN > 1, k2 approaches 1/N. The output

interference power as given by (40) is, in this case, strongly suppressed

through the factor (I - k2N).

With accurate pointing (39) and (40) as well as (38) involve the quantity

I *T 12, the inner product of the desired and undesired signal pointing

vectors. If, for instance, the array elements were strung out along the x-axis

with positions xi,

IT* 2  N J ekx(cose, - cos d) (41

where 6 and e are the undesired and desired signal arrival angles relative

to array broadside and k is the wavenumber (=2v/X). For a thinned array with

the element positions xi far apart in units of wavelength and with e

sufficiently different from ed9 the sum in (41) is the vector sum of N arbitrarily

oriented unit length phasors. With N large enough the squared length tends

to be close to N.

If we take 1 2 N and also take k2 to be Ni we get from (38)

E(IS 1) i (N2 - 2N + 1) = (N - 1)2 (42)

n n
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If k2 had been zero, meaning there were no interference to suppress,

the factor (N - 1)2 in (42) would be replaced by N2 . As typically

found, the suppression process causes a reduction in signal output

power equal to that of a loss of one element.

Under the same assumptions, the noise output power is from (39)

2
E(N1 2) =!L (N - 1) (43)

n

Taking the view that the interference is totally suppressed, the output

SINR is the same as the output SNR which is, using (42) and (43)

SNR SINR = lci (N - 1) (44)
a

n

More generally, the output SINR is given by substituting (37), (39), and (40)

into (36).

A-16



3. COMPUTATIONAL RESULTS

Based on the results of Section 2, above, calculations of the steady-

state output signal-to-interference plus noise ratio (SINR) were carried

out assuming a linear array exposed to a desired signal and one or more

undesired signals. The equivalent weight vector defined by (7) is given by

W = [(l - Fs)Ia-IM d + 718jll MJ+M s(5

5 d jn

(45) which is a composite of (12), (13), and (15), was used to

calculate the equivalent weights and the corresponding mean square signal,

noise, and interference outputs.

Figure 3(a) shows the the linear array element layout used for most

of the computations. Seven elements were placed non-uniformlv over an interval

of 10 wavelenghts and a desired signal was assumed to be arriving broadside

to the array. Computations of SINR were made for various deployments of

interferers at various power levels relative to noise and signal. Since the

behavior of a sparse array with arbitrarily selected element positions can be

expected to depend on the particular realization of those positions, a second

element layout as shown in Figure 3(b) was used to repeat a number of these

computations. A sampling of te results obtained is presented below.

Of particular interest are the results shown in Figure 4 for the case of

a desired signal arriving broadside to the array (8d - 900) and a single

interferer arriving 50 off broadside. Signal, interference, and noise power

are respectively 10 dB, lOdB, and 0 dB. The SINR versus pointing angle

is shown for the case of an array with directional constraint only (the

Applebaum-Chapman case) and for the hybrid array with varying degrees of

perfection in the self-generated reference, i.e., with various F . With an

ideal reference, i.e., F s 1, we see very little sensitivity to pointing
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error (pointing error is pointing angle-90*), while with a directional

constraint only, the pointing error sensitivity is extremely high. As

the reference generating loop tends toward the ideal, the sensitivity

decreases with reasonably tolerable levels achieved (3 dB loss in SINR for

0.50 pointing error) with moderate residual reference loop attenuation (5%)

and phase shift (100). Results not substantially dissimilar were obtained

with the interference level raised to 20 dB with the alternative deployment

of the array elements.

The interferer used to generate Figure 4 being 5* off broadside is

outside the beamwidth of the quiescent array. By quiescent array we mean

the array with adaption circuits inactive. In Figure 1 the quiescent output

is e . The terms "beamwidth" and "mainbeam" will be used only
m

in connection with the quiescent array. The behavior of the hybrid array

with mainbeam interference is of interest and results of computations illustrat-

ing its properties under such a conditionare shown in Figure 5. A single

interferer is assumed 1i off broadside with all other conditions identical

to those used to generate Figure 4. Interestingly, the sensitivity to pointine

* error of the array with directional constraint only, Figure 5(c), is not as

severe as for the corresponding case of Figure 4 with the interferer off the

mainbeam. The SINR in Figure 5 with correct pointing to the broadside signal

is however about 8 dB less than for the case of interference off the mainbeam.

This confirms a result obtained by Bar-Ness [91 in a comparison study of the

two array processing methods which have been fused here into the Hybrid Array;

the directionally constrained array is strongly affected by mainbeam inter-

ference. Figures 5(a) - 5(c) show the behavior of the Hybrid Array with ideal

j and non-ideal reference loop. The progressive increase in pointing error

sensitivity is evident as the reference loop moves away from the ideal. The
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r-

SINR with correct pointing is seen however to be unchanged from that of the

pure directionally constrained case. Sensitivity to interference level in

the case of mainbeam interference is however more evident than in the case

of off-mainbeam interference. In Figures 6 and 7 are shown results of com-

putations with interference level of 20 dB and 0 dB relative to the noise

level and with all other conditions identical to those of Figure 5. With

20 dB interference to noise ratio, Figure 6, the SINR with perfect pointing

is slightly below (about 0.3 dB) that obtained with a 10 dB ratio. With

0 dB interference to noise ratio, Figure 7, the SINR with perfect pointing

is above (about 2 dB) that obtained with a 10 dB ratio.

It should be noted that the dips in the SINR curves, Figures 5-7, do

not occur at values of pointing angle equal to the respective interference

arrival angles. Rather, as the level of interference is raised relative to

that of the desired signal level the dip moves from a value somewhat above

880 to a value close to 89, the actual interference arrival angle. This

behavior appears to be a consequence of desired signal reduction induced by

the interference and the effect of element noise. It should be noted that the

multiple sidelobe canceller output, 1 Ty in Figure 1, contains both signal and

interference when pointing at an angle below 890. Because signal and inter-

ference are angularly close to one another the output u T which acts to cancel

interference when pointing below 890 tends also to cancel signal. The signal

and interference powers in the numerator and denominator, respectively, of the

SINR both decrease. Because, for Figure 7, input inuerference and noise are

taken to be of equal power, the output interference, being partly suppressed

when pointing away from 89, loses its effect on the SINR. The net SINR

will therefore continue to decrease as the pointing angle moves further

below 890. The minimum actually observed occurs when the pointing angle
T

becomes such that the cancelling effect of u T on the desired signal goes

through a maximum. When the undesired signal is large as In Figure 6 the

SINR immediately below 890 is largely determined by signal and interference -

not noise. Here, as the pointing angle moves below 89, though both

signal and interference may be decreasing, their ratio is increasing.
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4. CONCLUSION

The Hybrid array processor analyzed here utilizes prior information

on expected direction of signal arrival and on signal structure. It is a

fusion of techniques using a directional constraint and a self-generated

reference signal. It was here shown that the sensitivity to pointing

error typical of (zero order) directionally constrained adaptive arrays

is substantially reduced, the degree of reduction depending on the self-

generating reference circuit. When the latter has unit gain and zero

phase-shift the sensitivity is all but eliminated. With modest departures

from these conditions there is still a significant improvement. In the

particular case of a 10 wavelength linear array comprised of 7 non-uniformly

spaced elements with a desired signal arriving broadside to the array and an

interferer 5' off broadside, the output SINR falls of f about 20 dB for a

pointing error of 1/20 when no reference is used. On the other hand, with

a reference generating circuit which tracks the amplitude of the desired

signal within 5% and without phase shift the SINR is off by about 3 dB; with

amplitude 5% off and a phase shift of 100 the SINR is off by about 8 dB. Im-

provements in sensitivity to pointing error are also observed when the inter-

ference is within the beamwidth of the quiescent array. However, such inter-

ference is observed to blunt the effect of pointing error even when no re-

ference is used. The improvement with reference is therefore less dramatic

in this case.

We have alluded to the advantage expected in transient response of this

scheme over one which does not utilize the directional information. This

is subject of another analysis and will be reported separately.
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APPENDIX Al - EQUIVALENT WEIGHT VECTOR

We here extend the result obtained by Applebaum and Chapman [1] for a

directionally constrained array, to the case of the Hybrid Array represented

in Figure 1.

Using (3), (4) and (10) in the main text and writing u = Av we have

y - g A v(sT*v -Ty-TAv- e (Al-i)__ r

- g[A Ms A MA -Ave r

where M is the covariance matrix of inputs: that is

M = v v

and it is positive definite (independent noise voltages are always assumed at tile

array elements).

To evaluate v e (1) is rewritten-- r

v(t) = a (t) l + S(t)

with a(t) representing all interference and noise components. Then using

(6), replacing v with the signal part above we get

e = T (S r  vrA)sd (AI-2)
eod - - A--

From (11)

= Fs( * -yTA)sd +n

e r  F r (Al-3)

jI so that

*EqttUc-n 0i the mn text wiee hencefc'tth be tecafeed withou.t jutthe.-
iomnment.
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v o Fa *T T As+n(AI-4)

F d(* ATy)

where- [ciF ds -

Md 2d

is the covariance matrix corresponding to the desired sig~nal direction vector andi

where we have assumed that n, r and the desired signal are all uncorrelated.

(Since n arises from .1 some dependence is apt to exist; it is here assumed

negligible). Substituting (Al-4) into (Al-l) we get

y g[** - A MA T - j 2 IF A Md(s A ATX (Al-6)

TT

Premultiplying by A Tand using (8) we get

s w= gATA M- 21 i FM d 1W (Al-7)

This result, from which the weight vector w can be obtained is in a form

similar to that in Applebaum and Chapman [1, eq. (4)), the latter being

obtained from (Al-7) with Fs . 0.

For the case g >-> 1 we can also get from (Al-6),
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A * M - Io, IF sMd1w 0 W A-8)

Since As = 0. meaning that the (N - 1) linearly independent N-dimensional

row vectors of A are orthogonal to s, the solution to (Al-8) must satisfy

[M- Ic2 IFsM d]IJ = u

or

W = L(M - ja 2 IF Md] -1 (Al9)

where u~ is an appropriate constant. From (9) we have

s = N T [14M - 1.2IF sM1 d (Al-10)

so that

~ T U21 M 1 
*(Al-ll)

and

-1*UM 1- (Al-12)

where

MM a 2 IF M d(Al-13)

Mcan be shown to be non-singular.
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APPENDIX A2 - INVERSION OF THE COVARIANCE MATRIX

We obtain the inverse of the covariance matrix, M, of the array

element output vector as given by (1) when a single interferer denoted

B(t)s I is present. M may be written (see (15)-(18))

M 2[ YdMd + ]= M2 Mo" (A2-1)
na [I d I n o

*T *T
where M = - = s-Is-, I is an n by n identity matrix, and yd and y

are SNR's of desired signal and interference, respectively. Md and MI

are positive semi-definite so that M is positive definite and therefore

invertible.

For any two matrices A and B of dimension (n x r) and (r x n), respectively,

if the inverse of Cin + AB)exists, then [10]

(In + AB) = I - A(Ir + BA)- B (A2-2)

I is an r x r identity matrix.

Eq. (A2-1) may be rewritten

M I +- T 023
MO = n + Yd~d Y II id (A-

Tja
' 1

and its inverse may be written
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+ y *7 T
M

1  I-Ls F iE

L L4 j :~
Tt

where 12 is a 2 x 2 identity matrix. The matrix factor in the second form of

(A2-4) which is to be inverted gives

* *

SII

d- NY 1] ! * d-1 YT(24

K--5s NYI +1'
I I I -2

T T

I yd + 1 YT*.JyI NY1 + 1

i

A-27



where A - (NYc + l)(Ny1  T 1 -YYI sI 2  Thus

-Y d Ny d + L -11i -aA25

n At d(NI +lMd -YdYI(MdMI + MINd I YINd I )

Equation (22) in the text is obtained from this result by replacing yd by

and 2
Y 1- F) mndultiplying by 1a to give the inverse of the effective

covariance matrix, M1
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List of Symbols - Appendix A

A transformation matrix

E[ ] taking expectation of [ ]

e output of the beamformer

e array outputo0

e eod signal component of the array output

e (sig) output desired signal of a beamformer

e reference signalr

F operator representing the effect of the bandpass filter in the

reference loop on the desired output signal component

g gain in the weight setting loops

I identity matrix

1 0output interference

J number of interferers

k wave number

k 1 constant related to reference quality

k 2  constant related to interference to noise ratio

9linear dimension of the array

M covariance matrix of array element outputs

M 1 equivalent covariance matrix

M- I  inverse of M

Md covariance matrix corresponding to the desired signal direction vector

M ij covariance matrix corresponding to the jth interferer direction vector

Mn covariance matrix corresponding to noise

j M normalized covariance matrix

N number of array elements

N 0output noise
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List of Symbols - Appendix A
(C ont inued)

n noise component of the reference signal

n(t) complex noise envelope vector

jq(t) interference and noise components of v(t)

r normal output signal to noise ratio S14R/a d N

R ] real part of [Ie

s steering vector

*

s complex conjugate of s

s arrival phase vector of the desired signal

Sdi the ith unit amplitude component of S

th
si arrival phase vector of the j interferer

S 0output signal

T
s transpose of s

SINR signal to interference plus noise ratio

SNR signal to noise ratio

u input vector of the multiple sidelobe canceller

thv. (t) output of the i array element

v(t) output vector of array elements

w equivalent weight vector

xth array element position

£ yweight vector on the sidelobe canceller

tt

a (t) desired signal waveform

]oal2  power of a(t)

iI Bj 12  power of B(t)

(t) jth interferer waveform

Y d signal to noise ratio at array elements
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List of Symbols - Appendix A
(Continued)

7I interference to noise ratio at array elements

determinant

C measure of pointing error

ed arrival angle of the desired signal

01  interferer arrival angle

wavelength

a constant

P a constant related to reference quality

02 noise power at array elements
n

wcarrier frequency

( ) expectation value of ( )

norm
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Appendix B

TRANSIENT RESPONSE OF THE HYBRID ARRAY

by

. AChien-Chung Yeh
1. Analysis

We examine here the transient behavior of the Hybrid array. The

circuit is that shown in Fig. I of Appendix A and the notation is also

that of Appendix A. The input vector is written

V(t) = c(t)Sd + 6(t)S I + N(t) (1)

where a(t) and 8(t) are complex envelopes of desired and undesired

signals respectively, d and SI are their direction of arrival vectors,

and N(t) is the random noise vector.

The output of the beamformer is

e(t) = vT(t)S* s*Tv(t)

with S being the steering vector. We also have

U(t) = A V(t) (2)

T T
where A S 0. The sidelobe canceller generates yl(t) Y U(t) -Y A V(t)

so that

e (t) - e - yl(t)

= (S - AT Y) TV(t) (3)

I Define

e'(t) - e (t)g(t) (4)

where g(t) is the spreading code. eo' (t) is the array output with the
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desired signal despread. The output, e out(t), of the bandpass filter

assuming it to be a single pole with time constant T1 is given by

=; "-deou (t)
T dut + e (t) - eo'(t) (5)

The reference signal, e r(t), is obtained from e out(t) by respreading

using the code g(t);

er (t) = e out(t)g(t)

The residue feedback is

Ef(t) - e0(t)-er(t)

= [S -AT Y(t)] Tv(t) - e ou(t)g(t) (6)

For the weight control loop, we have

dY_(t)
dt + Y(t) = G e(t) U*(t) (7)2

Substituting (3) and (4) into (5), we get

deou (t) T1 dt + e out(t) [S - A y(t)]V (t)g(t) (8)

We examine the transient response by assuming that the signal component in

V(t) is a step function. Let

a(t) - ag(t), t z 0

0 t < 0

The foregoing may be viewed as the waveform seen with the first informa-

tion digit received; the amplitude is a and the signal is modulated by
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the spreading code g(t). Taking expectations on both sides of (8),

!d ou (t) _ _ IT
dt + e (t) = [S - ATY(t)] V(t)g(t) (9)

'l dt -+eout~t (9)

It is reasonable to assume that the interference and noise are

independent of the spreading code. Also in an adaptive array, the weights

generally vary much more slowly than the input, i.e. the control loop

bandwidth is much smaller than the bandwidth of V(t). See e.g. [11, where

a similar argument is used on the independence of weight fluctuation and

input. We therefore assume that to an adequate approximation the weights

may be treated as being independent of V(t). (9) then becomes

de out (t) -T

odt + e- (t) = [S _ At)(t) (t)g(t)
'1 dt out"

= [S* ATy(t) ]T a'S (10)

Next, substituting (2) and (6) into (7), we have

dY(t) *

T2 dt + Y(t) = Gc(t)V (t)

= G{S -AT Y(t)] TV(t)-e (t)g(t)}AV (t)

G(A*V*(t)V T(t)[S*-AT Y(t)]-A V (t)g(t)e (0 )
out

Taking expectations on both sides of (11) and using the same assumptions

on independence we get

d~y(t) * T *T
T2 dt + Y(t) - GfA V (t)V (t)[S -A Y(t)]

- A V (t)g(t)e out(t)} (12)
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Since eout (t) is the output of a narrowband L.P.F. or B. P. F., as com-

pared to the spreading code chip rate, it should be admissible to treat

it as approximately independent of the product of V(t) and g(t). That is,

we can assume V_ (t)g(t) - aS + N(t) and eo(t) - aS + N2(t) with
-= tl Cout =d =

the fluctuation components N1 (t) and N2 (t) essentially independent. Thus

(12) becomes
:dY_(t'

T2 dt + Y(t) - G{A*M(S*-AT7(t)]

- A V (t)g(t) e out(t)

G( (t)A}t) -AoL (13)Su- ou t

where

M V (t)V (t)

a2Sd*SdT + 82 S*SIT + an2I (14)

with

$22
2 2B2 - 58(t)j

a I N*(t)NT(t)

(13) can be arranged as

dY(t) * t +G[A* e (t)] (15)

2 dT (I+GAA)y(t) A d out

(10) and (15) are coupled sets of linear equations which are to be solved.

IAs they stand they are tedious to solve. However with the following

approximation a manageable result is obtained. Assume that T is small.
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T2 is large and G is moderate so that e out(t) varies much faster than

Y(t). Then in (10) we may treat Y(t) as a constant and get the solution

of e out (t) as teut(t) -aS ATY0TS(1e l) (16)

Substituting (16) into (15),
t

4y(t) *T * 2* T T T
dt - + G[A MA -A aI A (1-e 1)]}Y(t)

t
* * %T t

GA*[M - a2 * I- e T1)]S (17)

In the following we look at the physical meaning and justification

of (17). First, if the reference loop were infinitely responsive, T1 would

have to be near zero and (10) would reduce to et (t) = =[S*ATy(t)T '

This substituted into (15) would give

dY(t) * 2 * 2 T
dt -[I + GA (B S1  + anI)A ] Y( t)

*2*T 2 *

+GA (aS I SI T + an 2)S (18)

this result is embodied in (17); note that if t is large enough so that

e- t/l = 0 (17) becomes identical to (18). Next, we know that without

the reference loop, the weight equation would be

dL (t)
dY~t) * T-

T2 dt f -(I + GA MA )Y(t) + GA Ma (19)
t

With t 0, e 1 1 1, so that (17) turns out to be

d-Y(t) T *

'2 dt =-(I + GA*MAT)X(t) + GA MSIIt is the same as (19).
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To summarize, when t=O, the output of the reference loop is very small

and the weight equation'is similar to that without the reference loop.

For t large enough, the output of the reference loop reaches its steady

state value and the array works as if we have a perfect reference loop.

(17) may therefore turn out to a good approximation.

It should be pointed out that an information bearing waveform a(t)

will be comprised of a random sequence of positive and negative steps.

Even after the initial transient there will be signal related feedback in

E f resulting from inability of the reference loop to instantaneously follow

signal changes. These will affect the weight control loop even though the

interference input to the weight control loop and the signal residue on

£f are statistically uncorrelated.

For G large enough such that I can be ignored compared to GA*MA 
T

(17) reduces to

t
dy(t) T 2 * T T1

T - - GA*MA -A S - e
2 _____ =* 2 * T *

+ GA*[M-a 2 "x- (1 - e T1)]S* (20)

The solution of (17) for the case of a two element array is carried

out in the following. For a two element array, ](t) is a scalar. There-

fore (17) is a first order linear differential equation. We divide both

sides of (17) by T 2 and rearrange it to give

t

dt + { + - C* (2 S* T 2 A*a2SSTATe T1 ])Y(t)
dt T2 T2  =(S += oI)Ad

r! .__

_*42S*T 2 * T eT 1* (21)
-A*E(8S S +aI

T 2 -1-1 n = =d
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From the theory of ordinary differential equations, the solution of

dy(t) + f(t)y(t) r(t) (22)
dt

is ft

y(t) e - h ( t ) [ e h(t')r(t')dt' + C] (23)

where h(t) f(t')dt' 
(24)

"o

and C is a constant. (21) is exactly in the same form as (22) with

tG 2 *•T 2 2*TT

f(t)- +-(A (SSS a I) A n e 1l (25)

and t
(B2I*ST 2 2* T1

I) + L 2 dT e ] (26)r(t) k- -- +§

Using (24) and (25), we get

(02 T i T A * TAT t'

h(t) _ + G S *T + a )A + A*% TA e ]dt'

1 T 2 2 _ I  2

[ -+ - A (8 S1 S1  + a 2I)A T]t
2 2 -- n

_t

+ -Aa2d S AT T, (I- e T1) (27)
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The constant C in (23) is determined by the initial condition. If we

let y(O) - 0, then

C - Y(O) - 0

Therefore, the solution of (21) is

Y(t) = e-h(t) eh(t')r(t')dt (28)

with h(t) and r(t) given by (27) and (26), respectively.

2. SIMULATION RESULTS

The behavior of a two element array with X/2 spacing as shown in

Figure 1, was simulated. The desired signal was assumed to be spread in

spectrum with an information sequence of 100 bps generated by a seven digit

shift register and a code sequence of 10K bps generated by a 10 digit

shift register. The desired signal arrival angle was assumed to be at

'broadside, i.e. ed = 900 and the interferer was assumed to be a pure

carrier arriving from, e1 = 450, in phase with one of the two binary

signal alternatives.

In the first part, we assume that there is no noise and the SIR is

measured at e . The SIR is defined as the ratio of squares magnitudes of
0

the samples of the desired signal and interference at each time. The

signal power and interference power are assumed the same and are chosen to

be 100. The steering angle, e, ranges from 90 to 700. G was chosen suchI2
that GB2 >> 1. I was chosen such that the bandwidth of the reference loop

is about the same or several times the information bandwidth of the desired

signal. , was chosen so that the control loop bandwidth is much smaller

than the information bandwidth. Simulation was done at baseband.
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Figure 2 is the result of simulation with e - 90, G 1 10, and

T 4; -I is a parameter. Two values are chosen for Ti:

1 1

200w and 1000W

For the first one, the bandwidth of the reference loop is the same as the

information bandwidth. For the second, the reference loop has bandwidth

five times the information bandwidth. The results show that the response

1 1
with tI - 200r fluctuates more than with Ti- I000w but both have the

same convergence speed. At t-0; the initial value of the controlled

weight y was set to zero, and the output SIR is about 7 dB. When t

increasing to half the information bit duration, the SIR increases to

about 40 dB. At the end of the first information bit, the SIR is about 60

dB. However, as the polarity of the information bit changes, the SIR

decreases drastically and then starts to increase, again.

An explanation of Fig. 2 is given in the following. The weight y

is controlled by the correlation of c f and U. With correct pointing, U

contains only interference. Let S and I denote desired signal and inter-

ference respectively. U can be written

U = I (29)U

The feedback is

Ef = eo - er (30)

e can be written0
I e . S + I

e 0 0 (31)

e can be approximated byr

er Sr +Nr (32)

where N is a noise term resulting from interference not totally
r

eliminated by the reference loop filter. Substituting (31) and (32) into
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(30), we get

Cf (S - Sr ) + Io Nr (33)

Using (29) and (33), we have

fU (S - ) I + I - NtI
f a r U 0oU r U

SfI + I - NI1 (34)
fEU o U r U

where S = S - S •f o r

In (34) the term IoIU drives y to cancel the interference, and the

terms SfI U  and N IU make the weight fluctuate. The fluctuation of the

weight increases as Sf or G increases.

The desired signal component of the feedback decreases during the

transient as the bandwidth of the reference loop increases. That is

11
why the response for 1 200 is more noisy than that for T= I0--

However, increasing the bandwidth of the reference loop also increases the

noise component, N , in the feedback. There is a trade-off between de-

creasing Sf and increasing Nr.

The drastic drop in SIR as the polarity of the information bit

changes is caused by the delay of the reference loop. The waveforms of

Sot S and S f during the transition time are shown below.

0

rI s

I
fV
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When the polarity changes, there is a spike in Sf. In the short interval
f*

of its duration, the term S I drives the weight away from its ideal
f U

value and the SIR decreases drastically.

It should be pointed out that if the desired signal power is

much smaller than the interference, the weights will not be so effected by

the signal when its polarity changes.

The convergence speed is controlled by G and T2. Increasing G or

decreasing T2 will increase the convergence speed. In Fig. 3 convergence

rates for G = 30 and G = 10 are compared. Since the fluctuation increases

1
as G increases, T was chosen to be i0007 to reduce the fluctuation.

The results show that the response for G = 30 is about three times faster

than that for G = 10 as expected, and reaches steady state in about one

half the duration of an information bit.

i
We kept G = 30, '1 = i000 and T - 4, but changed the pointing angle

to see the effect of pointing error. Four steering angles were chosen,

namely, 6 = 90, which is the correct angle, 890, 850 and 700. Results

are shown in Fig. 4. With 5O of pointing error, the array is able to

work well and reaches steady state in about half an information bit,

though there is some degration at steady state. However, for 6 - 70,

the convergence speed is relatively slow and can not reach steady state

within the first information bit.

The slow rise in SIR when pointing at 70* requires explanation. For

a large pointing error, the desired signal component in U is not small. This

signal component will correlate with the signal component in the feedback

making the signal component into the reference generator time varying. The

apparent effect is to significantly increase the convergence time. This

indicates that knowledge of the direction of the desired signal, or a reason-

able approximation to it, can be used to significantly reduce weight con-

vergence time.
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Simulation of a two element Applebaum array was also carried out by

setting e rto zero. Results show that the fluctuation in response is

much larger than that of the Hybrid array. The reason for this is that

the signal component in the feedback is very large in the case of

the Applebaum array while the signal component of the feedback is largely

eliminated by the reference loop in the case of the Hybrid array. We

have seen that the fluctuation increases as S fincreases, In order to

reduce the fluctuation, we have to decrease G or increase T 2 This,

however, will make the convergence speed of the Applebaum array much

slower than that of the Hybrid array.

We next added random noise to the simulation described above. In

addition we took the output point to be the point identified as e Otin

Fig. 1 and determined the SINR here. First the array element signal

powerinterference power, and noise power were taken to be 1, 100, and 1,

respectively. Since the spreading ratio is 100 to 1, without adaption the

output signal and interference have about the same power and are 20 dB

higher than the noise. With G - 10 T and T 4, four
10 T200ir2

pointing angles, 90%, 89', 850 and 700 were chosen to carry out the

simulations. Results are shown in Fig. 5. It can be seen that with 50

of pointing error the loss is not much. Within half an information bit,

the array can null the interference such that its power is much smaller

than noise and the SINR depends on the signal to noise ratio. Therefore

the SINR is about 20 dB which is the signal to noise ratio at the input.

However, for e - 70% the convergence speed is relative slow. But the

array catches up quickly after the first information bit.
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It is worth noting that since the signal power at the array elements

is chosen to be much less than the interference, the weight is not much

effected by the information bit polarity reversals. There is a drop in

instantaneous SINR as the polarity changes since the signal falls to

zero at this time but the weight is apparently not seriously affected.

We then simulated the case when signal power, interference power, and

noise power are 1.00, 100 and 1, respectively. The values of G, Tit, t2

and pointing angles used are the same as those'in Fig. 5. Simulation re-

suits are shown in Fig. 6. We see that with 50 of pointing error, the

array can achieve 40 dB SINR, which is determined by the signal to noise

ratio at the input, within half an information bit. For pointing at

e = 70% the response is slow and is not able to null the interference

below noise within one information bit. As the polarity of the informa-

V tion bit changes the weight is driven away from its original value be-

cause the signal has the same power as the interference at the array

input.

To justify the assumptions made in analyzing the transient response,

the controlled weight obtained from (28) of the work on transient response

is compared with the weight obtained from the simulations. Only the

imaginary parts are compared; the real parts are very close to zero.

Results are shown in Fig. (7) and (8). The values of G, Ti. and T2are the

same for both figures, which are C = 10, T,= 20T and T = 4. The

signal and interference arrival angles are, 0 = 900 n =4*rs

pectively. Fig. 7 shows the results of the noise free case with pointing angle

at 6 - 890. Curve a is the theoretical results from (28) and curve b is

the simulation results. These two curves match very well. Curve C is

the theoretical results when we assume that T= 0, i.e. the reference
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loop is ideal. Figure 8 shows the results for the case in which the
signal power, interference power, and noise power are 100, 100, and 1,
respectivelyand 8 is 850. Curves a and b here also match very well.We therefore conclude that the theoretical results are based on reason-

able approximations.
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List of Symbbls - Appendix B

A transformation matrix

B.P.F. band pass filter

e m(t) beamformer output

eO(t) array output

e'(t) array output with desired signal despread
0

e out(t) output of the band pass filter

e r(t) reference signal

G gain of the weight control loops

g(t) spreading code

h(t) time function as defined in text

I identity matrix

I interference component of e

I interference component of U

L.P.F. low pass filter

M covariance matrix

N noise component of e
r r

N(t) input noise vector

Nl(t) noise vector

N2 (t) noise vector

r(t) time function as defined in text

S steering vector

Sarrival phase vector of the desired signal

SI arrival phase vector of the interferer

fS desired signal component of e0
0

S desired signal component of e
r r
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List of Symbols - Appendix B
(Continued)

S complex conjugate of S

U(t) input vector to the sidelobe canceller

V(t) vector of array element outputs

VT  transpose of V

Y sidelobe canceller weights

Yl(t) sidelobe canceller output

amplitude of the desired signal

L2 desired signal power at array elements

a(t) desired signal waveform

62  interference power at array elements

S(t) interferer waveform

E f(t) residue feedback

e steering angle

ed desired signal arrival angle

e1 interferer arrival angle

0 2  noise power at array elements
n

T 1 time constant of the reference loop

T2 time constant of the weight control loops

1
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Appendix C

EFFECTS OF RANDOM AMPLITUDE AND STEERING PHASE ERRORS

ON THE BEHAVIOR OF THE HYBRID ARRAY

Chien - Chung Yeh and Fred Haber

The adaptive array processor proposed by Applebaum [11 uses prior

information on the direction of signal arrival, through a steering vector.

A different system realization which constrains the processor to maintain

constant gain of the main beam is later dscribed by Applebaum and

Chapman [21. Ideally, both systems achieve maximum signal to interference

plus noise ratio. For application to communication, both systems are very

sensitive to the accuracy of the steering vector (3, J. To overcome this

shortcoming, a Hybrid array processing technique has been proposed for point-

to-point spread spectrum communication [5]. It has been shown that the hybrid

processor is much less sensitive to error of the expected direction of signal

arrival.

In addition to the error caused by imperfectly information of the

direction of signal arrival, the steering vector might be subject to random

phase errors arising from uncertainties in element positions or as a consequence

of quantization. In addition the system might introduce random amplitude

errors on the array element outputs prior to processing, arising from circuit

disimilarities. An analysis of effect of random errors in the steeringI vector in the Applebaum array has been given by Compton [6]. Here we study
the effect of phase and amplitude perturbations on the performance of Hybrid

array for both the gain constrained and the non-constrained processors. The

two versions of Hybrid array based on the Applebaum arrays with and without

gain constraint are shown in Figures 1 and 2, respectively. The analysis assumes
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narrow band desired and undesired signals and a reference generating

circuit which has achieved perfect spread spectrum chip synchronism with

respect to the desired signal. The analyses and computational results

are presented below.

Analysis:

Consider an N-element linear array with random gain error Cn, n-l, 2,. N,

on each element. The c 's are all assumed to be random variables with zeron

2
mean and variance a . The output signal of the array elements may bec

represented by the complex vector

V'(t) - CV(t) (i)

where C is an N x N diagonal matrix with elements l+cl, l+c2, ... 1+c N on

the diagonal, and V(t) is the output vector of the array elements without

random gain error. V(t) is represented by

J

V(t) = c(t)S+ jl j(t) + N(t) (2)

where S is the arrival phase vector of the desired signal comprised of N
=d

unit amplitude components, a(t) is its complex envelope; S is the arrival

phase vector of the jth interference signal, 8(t) is its complex envelope;

and N(t) is the complex noise envelope vector, the components of which are

A 2
assumed independent with power a . If, for instance, the elements are arranged

along the X axis at positions x , n-l, 2, .. N, the ith component of the
n

*1 arrival phase vector of a desired signal arriving as a plane wave at an angle

ed relative to the X-axis is sd - exp(jkxncosed).
n
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A steering vector intended for signals with arrival angle 0 but with

random phase error can be written

Jkx1 Coa j I
e -e I

jkxNcose j *SN

where 4 n' n=1, 2, . .. N are random errors. We will assume the-latter to

be i.i.d. random variables N(O,a ). From (3), the mean value of S is

J jkx 1Cosa

ikx Cosa

2e

-/2
e S (4)

since e =e and where

jkx 1Cosa

e ~ ol

jkx2 Cosa s
Se= o2 (5)

jkx NcoslIe -
5oN

j is the steering vector without random errors. Equation (4) shows the

steering vector S is not biased; the constant eG /,22 does not matter.
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With array output vector f , and steering vector S, the Hybrid array

with constrained mainbeam gain, as shown in Fig. 1, results in equivalent steady

state weights [5J

w- V ' -is* (6)

so that

e = # 14 (7)

The time variable is omitted but implied. In (6), the random variable U and

matrix Ml' are given by

T (8)

and

=i CI 
(9)

where

(1-F * +  1 ij +  (1210)

j=l ~-jI

with F being the complex reference loop gain. (Note that if F is
S s

complex, M1 is not Hermitian). Substituting (6) and (9) into (7) we have

e = PV' TC - C IS* (11)

using (1), (11) comes out to be

e =UVM C I* (12)

Define the equivalent weight vector W such that

e 0 VT (13)

Therefore, W - u M- C IS* (14)

Substituting (9) into (8), we have
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N
STCI CIS* (5)

For the nonconstrained Hybrid array processor shown in Fig. 2, the equivalent

weight vector is, as shown in Appendix A,

_---i C -1S* (16)

The average SINR can be defined as the average value of the SINR

treated as a random variable which is a function of the random gain and

phase errors. With this definition the average SINR of these two system

realizations are the same. However, it is difficult to get, by analysis,

an explicit expression for the average so defined. For analysis it is

easier to determine the separate averages of the power of signal, interference,

and noise, then to form the SINR using these averages. For the nonconstrained

processor, such separate calculations are especially easy since V is one.

We therefore use this approach below, setting p to unity. To insure that

the SINR so determined is meaningful we also carry out an average SINR

calculation by simulation using both definitions, and we find the difference

between the two quite small. Thus we conclude that the SINR obtained by the

analytical technique we have chosen, closely matches the SINR according to

the first definition, and apply to both realizations of the Hybrid array.

By setting u to be one, the average output signal power is

2STMI--s *=(asI

. 121----_sj - cs- H -dT

d•-= d -d (17)
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-l. T -l
C S S C in (17) is examined in the following. Since C is a

diagonal matrix, C~ is

1

-+l 10

C - 14c2 (18)

0 .

L Il+cN

For C n<<i, n-1, 2, .. .N. (18) can be approximated by

i 1 l - 2 0 (19)

_ l-cNI
To calculate C- S S C -1 take the expectation with respect to random phase

error first.

- --- T -i(0
(C S SC ) S S C (0

We examine S S in (20) _ _ _ _ _ _

Si

.S-' s 2 1 s 2 S]

-22
J J~x jk 2 x2-xe1cs

30 jk(x -x N)cose

e *e

(equation continued on next page)
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jk(x2-x1 )cose

-e 2 e jk(xl-x 2)cose 1

e

Le k(XlXN) cos 1
2

+ (l-e )I (21)

Using (5), (21) comes out to be

2 2

SS T  e S + (1-e )1 2 (22)

Comparing (22) with (4), we see that (1-e )I in (22) is contributed

by the self-correlated term, which is similar to the variance. Substituting

(22) into (20), we have

2 2
-1 * T -1 e-0 C 1 S *S T1C-.+(-e )C-1C-1 (23)

-0-0-

Then, taking the expectation with respect to the random gain error,
2 2

C-ssTc- 1  M e C-1S SC + (1-e )C- 1 C- 1  (24)

- *S TC-l

We examine C- S S C in (24).

(1-c
) 1So01

1 (1-c1 )so2

C S 2 o2  (25)-o "
(-cN) oN
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-1 C,-, y .. 1 o 1 (26)

Using (25) and (26), we have

-1 * T-1 2
C SSloC = (1-c 1)(1-c )s so2* (1-a2)

(1-c 2

(1--Y)(1..c )Sos (1-c 2 (27)-

The expectation of (27) is therefore

Saol o2 ol o

-1 * T 1' 2
a a ol So2 10c

a las N 1ac2

S S T (28)

C- C' in (24) i

2

21-c

L 
(1-cN2

2 ) (29)
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Substituting (28) and (29) into (24), we have

S___2 2

CIs*sTC = e (SS +o + ( -e 1+)(1+a )1

2 2
= e S T + (1-e )I +ac 2 1 (30)

Substituting (30) into (17), we have

2

Sd=!1[e - c  S T -1s *S TM -IT*- *

2

+ (1-e )S TM -1 i-T* *

+ 2 T - -1 IT* (31)c M M1 % (

nmilarly, the average interference output power is

p ( S 8 5 THc B w'. *

j=1 j = -Ij

2

S162 e-¢0S TM-Is *S T -IT*s*
"I - - --o I-! J=l

2
T -1 J1T* 2 T -1 -IT* (

(-e )s1 MI-MITsIj + Cc - 1j I (32)

The average noise power is

P = (NTw)(wTN)*n

1N Cl S*S TC -1M 1 *N (33)

In (33), we take the expectation with respect to the random gain and phase

j errcrs first, giving

C-9
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p ,NT -1 -1 *-T1 -IT* *
n O - ~l C SS C 11

MT flo2 * T -a 2 )

-22)+ a(l-e + T I] -1T* N

2-1 -- * 1 0 T -e -I*

+ 
(34)

Then, we take the expeccttion with respect to the noise random variables

giving

2

a 2e M 4T M -s* + a2 a,)r[MI 14, N

+a T -IT* T -

-c n1 1 12 2 FTT* -1-
n S-- + a(-e Trac 

M- I M

o- Trace *eT-I redT*us o 2

Note that the quadratic form N KT J N L1  N1
because the noise terms are independent with each other. n Ja

Discuission:

If there is only random gain error, i.e. a, a 0, G(1), (32) and (35)

turn out to be

P a 2 IS 1S S TM 1T*S d*+ ja'a c2 d 1 N1-I i I* (36)

C--



= .IKI jIll ILllII

J T*
2 ja2 ST M-i M -1T

+ ISj 2 Ioc_jMll l (37)
Jul

and

Pn ao n 2S TM - I T *M -Is o * + an2a c 2Trace [M - Im 1 T* ] (38)

The first term on the right hand side of each of the equations (36), (37)

and (38) is the output power without random errors. The second term in each
2

is contributed by random amplitude error and increases as a c increasing.

2
If there is only random phase error, i.e. ac  0, (31), (32) and (35)

become 2

2 0 1 *
Pd la le S - TMI 150- TM 1- 1

+ ~ 1 - a l-1 - d

a tcl(1-e 2S (39)M
-d 1 1 -d

- 2

P ~ 8I [eaS T- * T 1lT*

-- j -0 *s §0-IT

j2 )S T - - 1  1j

and- 2

2 -- ,
+ , lB (l-e )S T M SeTM-11 (40)

J -I 1 1 -

and 2 T t * r a of -te 2 - *

2 e- -o TM-TM- I - * 2()Tre[M-I
I

=c e ft (- iTrce[ses from (41)

The first term on the right hand side of each of the equations (39), (40) and

(41) is similar to each of the corresponding terms on the right of (36), (37)

-02
and (38) except foL" the factor e . As the phase variance increases, these

terms which represent the mean steering vector decrease. At the same time,

the second term on the right of each of the equations (39), (40) and (41),

containing the factor (l-e ), increases from zero. We point c'it that the

I
say, 1/2.
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To see explicitly how the signal is effected by the random gain and

phase errors, let us assume that there is no interference. Then,

.1 = (1-F ) S*21 S T  a 1 (42)

Using the matrix inversion lemma, we have

M1"l-= 1 I (l-F)Yd-d j S -1
• 1 M1 2 sd - (43)

a n (1-Fs)YdN + 1 -

wit h
2

d =  2

a
n

Assume that there is only random error, so that S - S It is shown in

the Appendix B that substituting (43) into (31) and (35), we get the results

shown in (44), (45) and (46), below.

2 2
2 - -00

lac le - °. N2  +0 I(-e )N

n 4 1 2 n 4 1(Fs)ddN+!2

1 21 2+,Z

+ 4 NY112 (44):1 On j ( I-l~nNs)dN

22 -a 0
a e N

+ n d s d.

n n4 yd+1d2

2an2 (l-e - O 0 ){Y dN(N-I)[ {I-Fs 12 Yd N+2-2ReFs]+N
+ G n 41 (1-F s)YdN+I1 2

+ 2 ac2 { dN(NI lY-Fs 12 YdN+2_2R eFs ]+N (45

aon 4(I-F s) Yd N+I 1
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where R F is defined as the real part of F . The signal-to-noisees Ss

ratio is then

2 2

Yde N4Y d (l-e )4Ydca 
(

SNP, - (46)
2 2-a 2-_F

e +(l-e +a 2 ){ (N-1)[ 1lFs2YdN+2-2RF]+}

In the following we separately discuss the effect of random phase error

in the steering vector and the effect of random gain error.

First we assume that there is only random phase error. Then (46)

reduces to

2 2
-a - .a

Ye
d e  N+Yd (1-e ) (47)SNR

2
I+(l-e )Yd(Nl) [l-F 2 s

Two special cases are of interest. With Fs  1, the reference signal

is ideal and we have from (47)

2 2

SNR =Y e -  N+ - (48)
Yd N+Yd (1-e )

Degradation of SNR for this case is the same as that for a conventional

beamforming array.

For F a 0, we have the Applebaum array for which (47) gives
s

-a, -a¢

Yde N4 Yd (l-e 0)SNR 2 (49)
~-oa

I+(l-e )Yd (N-l)1 YdN+ 2 )
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Equations (47) - (49) are shown plotted in Figures 3 - 5 for

N = 7, 30 and 100 respectively, with F as family parameter. The improvementss

obtained with the Hybrid array over the Applebaum array are here evident. It

should be noted, though, that with increasing N the effect of a given phase

error variance also increases.

Computer simulation was also carried out for a seven element lOX array

without interference with results as shown in Table 1. Six combinations

of F and a were simulated, each with 100 samples of random phase errors. The

third column in Table 1 was obtained by compuing the SNR for each random

phase sample then averaging over the 100 samples. The average SNR in the

fourth column is the ratio of average signal power to average noise power

when P equals one. The last column is the results of theoretical computation

based on equations (47) - (49). The difference between the third and the

fourth column is small. For the Hybrid array with F close to one, they are
s

almost the same. From these results we conclude that the simulation sample

used for the fourth column is adequate, and that the similarity of results

in the third and fourth columns suggests that the SNR calculated as a ratio of

averages and as an average of ratios are not appreciably different.

If there is only random gain error, (46) reduces to

SNR YdN 4 Yd (50)
l+Gc 2 ('d(N-I)[1l-Fs 1 yd'N+2-2ReFs+l}

With F 1 1, we have from (50)

SNR cd (51)
l+o 2

lc
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Degradation is the same as that for a conventional beamforming array.

For F M 0, (50) becomes
5

sNR - Yd YdaC (52)1+0 c 2 [Y d (N-1)( (d N+2)+ll

Equation (50) - (52) are shown plotted in Figures 6 - 8. The Hybrid array

is much less sensitive to the random gain error than the Applebaum array.

Computer simulation was again carried out for the same array geometry.

Results, as shown in Table 2, show the number of samples is adequate and SNR

calculated by two definitions are close.
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Fs a Average of Each Average Signal Computation Based
SNR Sampled Power Over on (47) - (49)

Average Noise
_____Power

1.0 50 18.42 18.42 18.42

0.95e 50 15.39 15.22 15.29

0.0 50 3.73 3.00 3.14

1.0 100 18.33 18.33 18.34

0.95e-j1 3 ° 100 11.52 11.08 11.19

0.0 100 -2.20 -2.96 -2.82

TABLE I

Simulation of 7 element i0 Hybrid Array with Random
Phase Errors.
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Fs a cAverage of Each Average Signal Computation Based

CSNR Sampled Power Over on (50) - (52)
Average Noise
Power

1.0 0.025 18.45 18.45 18.45

O.95e-jo 0.025 18.08 18.07 18.09

0 0.025 13.03 12.66 12.77

1.0 0.05 18.44 18.44 18.44

-j10
0

O.95e 0.05 17.15 17.10 17.15

0 0.05 8.22 7.56 7.73

TABLE 2
Simulation of 7 element 10X Hybrid Array with Random
Amplitude Errors.
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Appendix C1

The equivalent weight vector of a nonconstrained Hybrid array shown

in Fig. 2 is derived in the following. The steady state control loop

equation for G large enough is

VI (e o-er) r S (Cl-I)

where

e =-V Tw' i vTcw, (Cl-2)

and

S TCW
er  FS TCW' + n (CI-3)r s -d - r

Using (Cl-I) and (Cl-2) we have

Cvv~w * •

CVVCW' -CV e S (Cl-4)r

Using (Cl-3) V er in (Cl-4) is

V*e V (Fs dT CW'+n) = ioiS S TC W '  (Cl-5)
_r = s 0!d P r =d;-

Substituting (Cl-5) into (CI-4), we have

CV *vTw' - CF s lc2 1Sd * T CW '  
.S (Cl-6)

(Cl-6) can be written as

CMcw' -- *(Cl-7)

Therefore

W' C - 1 C-
1 S (Cl-8)

The equivalent weight vector W is defined such that

e = VTW (C-9)
0 - -

From (Cl-2) and (Cl-9), we have

w - M_ 1 1 c-1 s (Cl-10)
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Appendix C2

We work out an example to see explicitly how the desired signal

is effected by the random gain and phase errors. Assume that there are

only desired signal and noise. H1 reduces to

H 1 M (1-Fs)1.21Sd* SdT40n2 1 (C2-1)

The inverse of H1 can be obtained by using the matrix inversion lemma,

which gives

- ( -F )y S T

M1 1 1 2 (C2-2)
1 (1-F )Y d N+l

with y d 2
0

n

Assume that there are only random errors, so that S - S " (31) and (35)

-o -d

comes out to be

2

2-o T*

+ 21 (l-e * )5TM -IM -1 S*
- d 1 1 -=d

and P n n 2 e-72 d MI 1_ T*MII d,+On 2 -l e* 2)Trace[MI MI T *

+ oY 2 1 2 Trace[M[ M *
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Parts of (C2-3) are evaluted below using (C2-2). Thus

T m-1 * T -1 * T -1 T -1 *

ISTM-1* 1
2

1 T (l-F S)Yd S d T 2

a (1-F s)Y dN + 1

(l-Fs)YdN2  1

-2 N (1-F s)y dN+l

a ad

n

N
2

a (I-F s)YdN+1 
(C2-5)

and also

§dTM1-lMl- 1 T*d 1  4d -T (1-Fs) .dT I

sd 1

44

- -Td * *

(1-F)d +i

4[dT  -Fs YdN d T  * (1I-Fs)* YdNS

(1-F)-F s *N~

a (1-F s)y dN+l (l-Fs)y

N

41(-F N 2 (C2-6)

C-30



Substituting (C2-5) and (C2-6) into (C2-3) we have

2 2
CF- - -

[a 2le- 4 N 21 2 IQ I-e-O)
Cn I(l-Fs)YdN+112 + n 4 1 (1-Fs)YdN+ lI2

+ (C2-7)a n 4 (1-F s)yd N+1i

Parts of (C2-4) are next evaluated. Thus

sdT M 1-T*MI-1§d *  -1 §d T[ I (-Fs)Ydd §d TT*

c n (1-Fs Yd N+1

I (1F)ydd* 
T

(l-Fs)YdN + 1

* T *

(1-F s ) *YdN d * (1-F s ) Yd Nd

(S - ---o (1-F) YdN+ (Fs)ydN+ns d

4T *

a n 4 (1-Fs) dN+ l (l-Fs) Yd N+ l

N 
(C2-8)

an 4 (I-F )YdN+1I2
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and also

Traef (1-F )yd ds *T
Trace[M-K M -1T  _ Trace[i - s=dd

n 4 (1-Fs)Y d N + I

* .4T(1-F s) *YdS*d +d 11-Fa 1 2y d2NS*ST

S(1-F S)*Yd N + 1 I(I-F s)-yd N + 1 1 2 1

14 (-F s)Y dN (l-F s) YdN

an (1-Fs)YdN+l (l-Fs) YdN+l

11-Fs1 2Yd2N2

+ 21

(-Fs )Yd N+11

Nl 1 N[I-F 2yd 2 N 2+(l-F )yd Na n f(I-F s)Y dNIs

+ (l-F s)YdN+l]-[l-FsIYd 2 N2 + (1-Fs)YdN]

[1-F s12yd I N 2 l-FS ) YdN] + l-Fs2yd2 N 
2

YdN(N-I)(1I-FI 2_dN+2-2ReF ]+N
41 2 (C2-9)

a (1-F )y N+11
n s d

where R F is the r-a. rart of F

e, s

Substituting (C2-8) and (C2-9) into (C2-4), we have

2

2 -a.

c-e ')
n 41n (-Fs "d)+

2
yn(1e Wdi--)1-F s2Y dN+2_2Re F s]+N)

CY )y( " ) d N+ 11
2

a2 a 2y - 12ydN+2-2R F ]+N)
+ n cd sd es (C2-10)

an 4(lr )ydN+l(
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From (C2-7) and CI-1O), the output SNU is

SNI d

2 2

Jct'je 'N ++Ic2l(1-e )N+Il2I%2N
- 1 2

a 2eC -~ Nn 2(1-e-c +ac ){Y dN(N-1)11F aI2,yd N+2-2R eF a 4-NI

y Yde N+(d (l1-e 0)4y d a 2c1

e-G+le- +a ){2 y d(N-i) I1'-F' 2 y +-ReF s1+1}
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List of Symbols - Appendix C

C diagonal matrix with elements 1 + cn, n - 1, .N

cn  random gain error on the nth array element

e array output

e reference signalr

F complex loop gains

G gain of the weight control loops

I identity matrix

k wave number

M1 equivalent covariance matrix

N number of array elements

n noise component of reference signal
r

N(t) noise vector of array output

P d average output signal power

P average output interference power

P average output noise powern
R F real part of F
es s

S steering vector with random phase errors

S arrival phase vector of the desired signal

thS arrival phase vector of the j interfererZ-Ii

a n n component of Sn

S steering vector without random phase errors-o

1on n th component of S

o weight factor; a random variable here

V(t) array output vector without random gain error

, v'c ) array output vector with random gain error

Wequivalent weight vector

C- 34 (Continued)

" I , ,,. I....... I I L .....4



List of Symbols - Appendix C
(Continued)

"W1 weight vector defined bye - V'TWI

th
xn position of the n array element

01(t) desired signal waveform

8 (t) jth interferer waveform

Y 7d  signal to noise ratio at array elements

e steering angle

ad  desired signal arrival angle

02  variance of random gain errorc
02 noise power at array elements
n

C2 variance of the random phase errors
th

On random phase error on the n element
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Appendix D

ESTIMATION OF THE POINTING VECTOR

by

Chien - ChunR Yeh and Fred Haber

We deal here with the problem of deriving an array pointing vector

aimed at a desired source assuming that the environment may contain an

interferer emitter angularly close to the desired source. We suppose

that a reference station forms part of the system that station providing

system management, information on ground source location, synchronizing

signals, and also capable of serving as a beacon for organizing the array.

The scenario assumed is shown in Figure 1. The array shown in the figure

and utilized in the analysis is linear though there is no intention to

limit the approach to linear arrays.

The procedure to be examined is based on a two-step process. First

the array will generate a pointing vector aimed at the reference beacon.

This vector is determined by correlating array outputs with the output

of a reflector antenna with good sidelobe reduction properties. Then,

with given information on angular displacement between beacon and desired

ground source, the array will steer this vector, aiming it at the desired

ground source. The objective is to get a reasonably accurate pointing

vector toward the desired ground station in the presence of strong nearby

interference and without the requirement of extremely accurate knowledge

of array element locations.
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1. Estimation of Beacon Pointing Vector.

With the arrangement suggested in Figure 1, assume an N element

linear array with element positions xl, x2, ... xN, and a directive

reference antenna, though a planar array is likely to be used in

applications, the concept is more easily pursued using a linear deploy-

ment. At this stage the desired ground source is assumed off. The

beacon signal arrival direction is denoted eb and that of the inter-

ferer is denoted 0 . The inputs of the array elements, which are

denoted by x1 (t), x2 (t), ... xN(t), can be expressed as

x t) a~~e~ ikXnc°Seb J1 i kncoS8i

x nt)= (t)e e + 6(t)e e + nn (t) (1)

where a(t) is the beacon signal waveform, 6(t) is the interferer waveform,

0b is the electrical angle of the beacon signal at the origin, oi is

the electrical angle of the interferer at the origin and n (t) is the

noise, a(t), B(t), n (t), o and i are assumed to be independent.
n b

The reference from the directive reference antenna is

r =t) aa(t)e + b8(t)e + n (t) (2)

where a and b are complex numbers representing the gains of the reference

antenna to signal and interferer. The vector of array element inputs is

'1 iXl Ct)"

X(t) = x2 (t)

xN(t)
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jkx COS8b  jkx 1COS
e e 1 £(t)

jkx2coseb Jkx cos6 i

Jt e i 2 i n2 (t)
' n(t)e" + S(t)e +

ikXNCOSeb JkxNcosi a N(t)
e e

= a(t)e b + 8(t)e S1 + N(t) (3)

where

S- kx1 COB b

i kxN COBB
Le

is the signal phase vector

e Jkx cosO

I= (5)

JkxNCOSi
e

is the interference phase vector and

nl(t)

N(t) n2(t) (6)

n nN(t)

is the noise vector.
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The vector S is pointing vector we wish to estimate and we consider-=b

the estimator S defined by
-b

T X(t) r (t)dt

rb Tb ~

;. , T

Y 0 (t)e lb + (t)e i. + N(t

• Job Joi*iaa(t)e + bO(t)e + n (t) dt. (7)

(7) can be written as T

1 a Ja 2(t)§idt +-I b' 2(t)--idt

.. + (t)eb. , b (c)ei + nr(t)J
We b fS La*a6t~e + n t)]

*o ijjo

+ (t)e [a a -t~e + *r(

+ N(t) [a a(t)e + b B(t)e + n (tj> dt. (8)

The mean and variance of the estimator all now examined. The

expectation of the first term on the right hand side of (8) is

1 T -

A a Sb 2(t) dtT JoM

a a 2 b(9)
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where

Ka2 (t)/ =2.

The expectation of the second term is

T1 * f 2'

A -I bS I (t)? dt
2 T -

0
• *2

-b * S (10)

where

(82(A)> = 2

The expectation of the third term is

A T- jb "*

0

"J * £ r -J O b )

+'B( e )E,'a a() /e b" +<n r (t),

+K N(t)>a (t)> <e-Jb>+ b< (t)> <e- i>+

nr (t) dt. (1

It is assumed that the beacon signal is a zero mean time continuous,

binary polarity reversal waveform and the interferer is monochromatic at

tthe carrier frequency of the signal. Then

<1 <(t)/", 0 (12)
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The phases *b and i are uniformly distributed between [0, 27],

so that

<eJo b>. 0

e Ji> . 0  (13)

and the noises are zero mean so that

Klr (t> 0
oNt)>= 0 (14)

with (12), (13), and (14)

A = 0. (15)

From (9), (10), and (15), the expectation of S is

< b> aa b + b B S I  
(16)

The second turn on the right represents a pointing bias which should be

kept small relative to the first term. That is we will want to make

b*B /a a 1 to avoid significant bias error. We now turn to the

variance of the estimator Sb . For two vectors A and B with

a b b

a1 b
___ a2  b2

A = and B 2 2

aN N

define alb

AB 2(17)

NN-
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With this definition, the variance of S can be written as
'b

Var <(b- <ib>)(ib <Sb>) > (18)

where * means the complex conjugate. From (16), (9) and (10),

< can be expressed as

T T

* < 1 2 t
a* %2 (t)', dt + J b<a(t)>§dt. (19)

Since it is assumed that the signal is a binary code sequence and the

interferer is monochromatic,

'2 (t a (t) - a

<82 (t\>
2t> - B2 (t) - B2  (20)

Substitute (20) into (19), fT !T
T a* 2(t)gdt + T b 82(t)SIdt. (21)

T 0o Jo -

From (8) and (21),

1 JTb *J T (t

-- -" T o a(t)e Sb LbB(t)e n r (t

Ji n * -Jb* 1+ (tle "oiSI [ a(t)e-i + nr * (t

+N(t) *a(t)eb + b B(t)e + n (t I dt
L r j

J

1 T Jb * J
T I a(t)e §bb B(t)e - dt)o

'1 T T*

+ J8(t)e S a a(t)e bbdt
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T ~[ Job Joi-*

+. ~ ()e 5 b + 8(t)e 'S nr (t)dt

fT
1 b(t) *b t(e + nr (t dt (22)

T 0j

Substitute (22) into (18)

Var (-b \ Sb > ) (9b <A>

c0 T a(t)e obbb *B()e idt

T*

+ j0Ta(t)e i a a(t)e- jo b d t

+T o

1 T Job) 
3 b *

+ 1 (t) te + b S(t)e nt

T 
r

Tfo T - i *
K (t)e +, b(t)e bdt

T -rb*-Ji

- T T (b * (t ) e o d t

:!+ ¥ (t)e -Jo +a (t- obd10

I1 T ~j(t)e\% + a(t)e joS n (rt)dtT' ' 0r

T
-- ) N ( aa(t)e + bB(t)e + nr (t d

0 I - I I
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(1) KT T a~~ fobb*atei t a(tI)e-Jb bB(t)e Jidt'>

(2) +I2TBte i Sa *(t~e _obdt T r' )e-i ±~ ot)eJbd
T00

,fT a~~ obsb* B ~ Jo i t T _oob
(3) +<.L2 -=c eSb 6(~ tj(t')e ias*a(t')b dt >

r T T
(4) +K J1 B )e S~ Ea * a(t)e-j dt* ~ 'eJ b6(t')e JOdt'>

T -

(5 +< 2 J a[t~ce + B(t)e is nr (t)dt

1 . +t(t')e-i b ab (t')ei )dtl

(6) +<-! it a a(t)eb + b*B(t)e n 'r*(t dt

T

N (ti [aci~t' )e b + b8(') e 1 + n(t )]dt>

T o b B _toe dt + B(t)e S a *ct(t)e-o dt]

f[act)e b,* + (t)e 1  Inr* 'd-

+ TN (t)[()eo + bB(t')e o + nr('It)
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(8) +<T!2 (1 L US ab + B(t)e ni ~r (t)dt

+ J N(t) a * a(t)e-j b + b * (t)e -Ji+ nr (t jd}

*10 r0 t0

T ac(t)e b * bB( eJ t'e + T r (t') ] J a ' e dt'

'1 F Jo fl*, i

(10) +< 2 a (t'~ 1  +ciqttje 4-no r (r~e
T c'o LJ

(T

(1)+- J0Lt) ~)e b, + b (tt)e i + r (tdt(3
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No Noise Case:

In practice, the signal is designed to be much larger than the

noise. It would be reasonable to assume that the noise is zero. Then,

only the first four terms on the right hand side of (23) are not zero.

The first term, in (23), is

<2 a(t)a (t') Ib1 2B1 (t)i3(t')dt dt

T o o 

-

1 2 1  (t)O(t. 2lb12ildt dt' (24)
T00

where I is an N x 1 all l's vector. a(t) is a binary code sequence

II

Sof rec~angular chips with random and equiprobable 
amplitudes t a.

D

D-1



It can be shown for such a waveform

<Q(t)L(t')>- L 2 [ - t- t'Ifor It - t'I T

0 otherwise (25)

For T >> T (24) can be approximated to be

1 T T <a (t)a (t')>82 Ib 1I2dtdt'T tO t=O

T +

= 1j~= 2 [1- It- ] 182 Ib 2_1 dtdt '

T2t I '0[ 211d

=1 o a2 TB2 2, d,
T = 2 --=

T a TB bi (26)

Similarly, the second term in (23) is

B (t)B(t,)IlIa 2a(t)a(t, )dtdt,>

<2 ) T
T tv t' - 0

= -1T 2  jalf2<II (t)(t)>dd

T- t'= t=0

T
1 B 2 TaI2 2ildt,
T2  t'=O l Idt

1 2 T2lal a (27)
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The third term is

T T a J2 b -J
<T 2II I0 ab SbS I e e a(t)%(t')O(t)6(t')dtdt'>

1 iT IT • * • 2 ,b _j 2'i 2

1 jT I T Jab S S Ie ><e ><G(t)G(t')>O dtdt'T2 t,= t=0 =~

- 0 (28)

because

<e J2b> = <e-J20.i> , .

Similarly, the fourth term is

IT }T J2 b J2 ia

T 2 tw .a b~b S Ie e a(t)a(t')B(t)B(t')dtdt'>

< ~T 2 J0 t20

*1 fT (T j * _ 2O

- a b S <e ><e ><a(t)ci(t')>6 dtdt'
T2 t' O , O

w 0 (29)

Substituting (26), (27), (28) and (29) into (23), Var[Sb] for the no

noise case is

VarSb] 2 12 2 1 2 2I 2
; -- I ' T8 JbI2_II + TB ja 211 (30)

D-13



where

jal - amplitude of signal at reference antenna output
relative to element signal level

JbI - amplitude of interference at antenna output
relative to element interference level

T - PN sequence chip width

T - integration duration

2
a 12 - signal power at each element

a /2 - interference power at each element

Example:

We obtain numerical values for the estimator bias in the no noise

case. Assume at the inputs of array elements the signal is lOdB lower

than the interference, and at the reference from the dish antenna the

signal is 20dB higher than the interference; i.e. the antenna gain is

30dB. Thus

2 2
B . l0a2

lal 2C2 . OOlbI 2B
2

so that

lal 2  10001b1
2

From (16)
^ *2 *2

<S > =a a 2 S + b a S

* 2 b *2
-a b + -2 S_

an

where

* 2IaI _ 1. 0
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The biasing error vector is V/10 of the desired pointing vector

magnitude. This may not be good enough. If at the inputs of array

elements the signal is the same as the interference (a condition which

is not unreasonable if the pilot source is a fixed station capable of

substantial power) and the antenna gain is 30dB.

2 2

and

jal2 2 1O001bi2

* 2 b*82S
<S a > b +a a '

aa

where

This ratio is much better though we would advise using a dish with better

than 30dB mainlobe to sidelobe ratio to get even greater suppression of

the bias term.

With Noise:

Let the power spectral density of the noise at each array element

be denoted (f) and assume it to be as shown belown-

(f)
n

2

[.1t
ni
2

T1 T1
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Let the power spectral density of noise at the dish antenna be denoted

*(f) and assume it as shown below

Or (f)

2
0 rT 2
2

1f

Tand Tare much smaller than T, the P-N sequence chip width. The

autocorrelation functions of the noise inputs are, respectively

R (t) - E[n n(un (u + 03]

n n neJwtd

n 27rt

andT 
(31)

R t) =E[n r(u)n rCu + t)]

I r r(f)e J7f df
s in 2Tr t

C2 2 (32)
r 27r t

T2
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The variance of S is given in (23). Here the first four terms are the

same as those for the no noise case, which are given in (26), (27), (28)

and (29). The fifth term in (23) is

IT J~b Ji *

1 [a(t)e Jo + 0(t)e SlIn (t)dtT2 Jo =

fTj[a(t')e -ObS* + 8(t')ei S Inr(t')dt'>

T *

+2 T'0 t 0 <B(t)B(t')><n (t')nr (t)>lldtdt' (33)

substituting (25), (31) and (32) into (33) and using T >> T, (33) can

be approximated by

rT t'+-T sin 2ff(t-t')

1 2t 21 It-t'I ] 2 2_____ 1dtdt'
T2 t'=O Jt=t'- [1- -T r 21(t-t') -1

T
2

T (T sin 2 1 t - t'

+T 2 it'= 0 Jt=O r  2vt-t') Idtdt' (34)

I

jExamining the two terms in (34) separately, the first term 4 s

t .sin2w(t-t)

1 2 tt___ 2 T2 dtt
T r 27r(t-t') -1

D
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+T,+j -

21. 
. . .

T 2 tM- T r 27rt tTT

si 2 t

1 J2 1 jt~l 2 1 2 2

T2 It-O r 2 1  dtdt

S2

s i n----

2' 1 T a 2[1 ' l 2 T 2 t(5
M+ "T t--0 r 24T 1-1 d

2 2

Ss22__T2_Idt

T O - 2] r 2 dt 3 5 )

S 2

2 ,o t- o r 2t- 2
t2

T=OjTu si 2TI'U

T 2  u- =o r 2___u Idd

(T , T2r

T r 2ru

Tju.'O-v0Or 12u 1u(6

T
2

2 I, 2__
i" T2  0

( T u)i 2  2u -1du (36)

From (35) and (36), the fifth term in (23) can be replaced by the

approximate equivalent

Ss i n 2 __f t

2 T2 t 2 2
Ij l--i -- dt

TJ0 T r wt -

T 2
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27it
T ~s in-

+ - (T 2 (Y2 I dt (37)
t~~pT 2t -

Simillarly, the sixth term is

1 fJ i b * J *
2 2(t[aa~~e + b a(t)e + ni rCtldt

N.H t')[ai(t')e +- bB(t')e + n r(t')]dt'>

TT

T T2 Jt"-O Jt-0 <

T r

1 t tin-T T n 21rt -1
-T

2 t- j II 2 (1 LL1 2 l dt '
Ti

rT (T s i}1-T -

+ T2 Jt'=o it-o nb o 21r (t-t I) dtt
Ti1

1 T fT ~ 2I(t-t) .~l -'

T-~ Jt'-0 OC 2jt 2 Ildtdt'

T1 T2
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2 l 2a2[1 - t 2 TIT 0 T] n 2wt -1d

T T1

+---2Jb 2 82 a 2 T1T2JO n 2rt -1

T

f1.

+ .1 2 0 (T-t)n 2 a1 T2 _
T 2rt )2ir 1 (38)

T2 _____2

The 7th, 8th, 9th and 10th terms in (23) are zero because of the

independence of the random variables representing signal and interference

phase. Substituting (26), (27), (37) and (38) into (23), we have

Var[ ] - C2 (lal 2+ b 2

T ~ sin21.t

+ a 2 [ o2 t2

+ T l -T r 27 _t n i d t

T2

22 2 T 2+-- (T-t)B a ld
2T 0 r 2 1___t -

rT sin 2
- t1 a 232[l_ t 2 T l

+ T 0 t ]on 2t -1dt

Ti

rT s i n_
2 - t

2 I ( 12t)1b1282a 2 T
+ T2  o n 2wt - ld t

T 1
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rT Si~l2irt sik2irt
TT sin T sin-

+ 2 (Tt)o2 2  T 2 2 dt (38a)
+ 0 r (21rt) 2  -

To simplify (38a) somewhat assume the rf bandwidths of array elements

and reference antenna equal so that Ti = T2 << T, we then have

I1 2 2 2 2
Var[s - a TB (tat + Ibi )I

b sin-

T O rT wt l

T

T

+ T 2  r2 + JIb a 2)(T-t) 2It i dt
2  r nr 1

r! T sin 2 2 _t
2 2 2 r

+ T2  0 (T-t)a2 2 ldt (39)

To examine (39), the second term on the right hand side of (39) is

r2t -1

TT 

Si 21tt2 )
(22 2 2n i T1 2 t- (a + Jt 7 dt

T

D1
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2 2 2 + j2 2)1- 21_wtdt (39a)
T (r a )r 1'TJo T

In (39a), two integral terms are examined below

sin 2 t

21 dt

T
1

21r x

'r 1 : sinx

=li : dx
0 x

4 (39b)

The other integral term is

j i 21t t dt 0 (39c)

for T - mTl, m is a integer. The second term in (39a) will also be

negligible for other values of T provided that T >> T V Substituting

(39b) and (39c) into (39a), the second term on the right hand side of

(39) is
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sin --
2 (a 2 + ja j20a2)( - t d

T o 20 rt dt
T1

0 1 i 2 (2 + aj2 y2 " _I1 (40). T ( r +] n)

The third term on the right hand side of (39) is

sin
2 -r

2 82/2 1'2 T 1

T2 (r + lb2n2(T-t) 2t -1 dt
•T 1

T sin--
2 (r2 b 2 n2 T ' dt

T 0O 2ir t
T

T 2 (a 2+ Iba) -- sin2-rt dt (41)
I 2( s as s c iby239c) (41 ) T

TIn 41 sin 2vt dt-O as specified by (39c), (41) then reduces to

(T s in 2 -__t

Ti1
2. 82 (Or2 + ib120n2)(T-t) 2nt--- I dt

2rrtT si

T 82(02 + Ib I 2 2 2 Jo dx
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1l 82(a2 + lb 2 n2 )l (42)

The fourth term on the right hand side of (39) will be approximated by

an upper bound, as follows:

T sin 2 2 ..t

(T-t)on2 ar2  sIn dt

T Jo 2wt t
T

sin
2 2

2 22 t1 I dt
.0 0w ) 2___

Sn r -1

2 2 2  ® T --

T1  2 2
cy n r 1 2 dx

Ti a 2 2 (4 3)

2T n r 1

Substituting (40), (42) and (43) into (39), we get our approximation

for Var[-b] "

T 22 2 2
VarLSb I T 82 (Ia! + IbI25

+ 1 02(a + ja[2l2a251
2T r n -i

2Tr+l 2 2 (a r 2 + lb12,n25_)1

+ T- 2 a2(44)
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To examine the estimated Smove thoroughly, we go back to (8). (8)

can be written as

TT

Ja *a 2t) dt+ -1 Job *B2(t)S~dt

1 T 1b * '0

ct(t)ej (b*8(t)e nr()d

0

J S (t)e J [a *a(t)e-o + n *(t)Jdt
10r

A+)[*atej b4- b * (t)e-j + n (t)dt (45)

The 2nd, 3rd and 4th terms in (45) are zero mean with variance not

zero when T is finite. However, the 2nd and 3rd terms can be written as

CiS and CS, respectively where C, and C2 are uncorrelated random variables.

So the 2nd term contains signal information and the 3rd term contains

interferance information. The 4th term is random fluctuation.

From (44) the variance contributed by the 4th term of (45) is

a T1 "'21.12 + Ta2l 2

jf TI. 22T-

+ T1 a 2(46)
+2T 0n r

1(45) can be written
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jWi
u1e

*2 *2 w2  (47)
... (a C +C ), + (b8 +C 2 )s4I + u e

•i

~Ue
N

In (47), u, u2, . . uN are independent random variables with zero

mean and variancea 2 2 a 2 2 (48)
u u2  UN

wI , w2, . wN are independent random variables uniformly distributed

between [0, 21]. The u 's are independent of the w 's.
n n

From (44) and (45) we can see that the variance of C is

2 r 22 22
C b + a Or (49)

and the variance of C2 is

2 -T 2 a2 ja2 + T1 620 2 (50)
2 2 r

Since the standard deviation of C1 is much smaller than Iact2 1, C can

be ignored in (47). Thus we have

2 2b*B2 + C2  u 1  Jw1S a a2 (b + *2 SI +  -W (51)-b-b a *a 2aa

uN JwN

The constant a a may be dropped. (51) becomes
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b'2* 2 vei-
bB e

S -S + S + (52)
'b -b *2 -1aa

N N

U

where v N is a r.v. with zero mean and varianceN *2
aa

2
0

2 
UN

~vN ji2 a4OvN  la2o

- 1 2 + - 2 bI2a

Ja 2a- 4 2 al 2 n 2T n

+T1 2 2
+2T n  r (53)

2. Scanning from Beacon to Ground Station.

We now turn to the problem of steering the beacon phase vector to

the direction of the ground station. From (16) Oe have

<Sb > - S +  I(54)
an

Ib and S I are beacon and interferer phase 
vector, respectively a and2

are the power of beacon and interferer. a and b are complex numbers re-

presenting the voltage gain of the dish antenna on beacon signal and

interferer, respectively.
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To examine (54) more thoroughly, define

*2

Y YRe + jYIm a * 2 (55)
a at

Then,

<b" + Y- " (56)

It is reasonable to assume that beacon and interferer have the same

order of power and that the dish antenna has a 30 dB mainlobe to side-

lobe ratio i.e. a2  82 and a 12 = 10. Then IYI is in the order of 103/2.1b12
From (5b),

jkx1 coso b Jkx1 cosei

jkx2cose b jkx2cose i
<Sb>  e + ye (57)

jkxNcoseb + yjkxNcose6~e ye

where e and e are beacon and interferer directions.
b i

To see the phase of the nth element of <§> we write

Jkx ncos b  jkxn cosO i

e + ye

=e n 1 + ye n i coseb)] (58)

The term in brackets of (58) is

jkan (Cose - coseb)
S+DYe
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1+aRe jo~xn cs - case b)] - Y msin~kx n(case1 - cose b)

+ j{Y Resin[kx n(case1i - cose b)] + Y Imcos[kx n(case1i - coseb )]1 (59)

n

The phase term is what we are interested in and is specified by

nI

-y sin[kx (case1 - caseb)] + Y~mcosEkn (case -case (0
l+Y = RcO~(ae n- -b- b (0

1+yReco~k n(csei£ case b)] YIM sintkx n(cose i cose b))

For jyI<<l, (60) can be approximated by

tany Y esin~kxn (case -cosb/ + Y i,)](os cs (61)

ncsk (cas n case n i

Since tan* n is small, tan 'P . n

n=YRe sin[kx n(case i -caseb)] + I cos[kx n(cas icos ) (62)

Fram (58) and (59), the nth element of <S > is
-b

jkx ncase b jkx ncase j(kx ncase b+ n)
e + ye n 1 = e b n(63)

n

The normalized mean value of the estimated beacon phase vector is therefore

ej(kxl1case b + '1

<b> J(kx2 Cs@eb + '2) (64)

Le (kx~coseb + PN)
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In (64), 1' 2 .... N are phase errors. (62) shows that * n is correlated

with kx ncose b which is the correct pointing phase. However * n is more like

a random phase error as the following example shows. The phase error of the

nth element as given by (62) involves trigonometric functions of [kx n(cos

ei - coseb)]. Thus we need only consider the mod-2n version of this

quantity, assume both 6 and eb are near r tad (both beacon and interferer
1

are near broadside and e i -b - 1). Then

cos i - cos b  sin(!- - - sin
Sb i n 1  eb)

b i 20

Assume an array of 10 elements with array size 500 wavelengths, the

average spacing between elements is 50 wavelengths. Then

kAxA6e 27r • 2.5

Adjacent elements will therefore differ by the order of 5w radiuses and

the modulo 21 phase differently will tend to be random. With non-

uniform spacing the modulo 2n phase differences will be further ran-

domized. Therefore *n may approximately be treated as a random variable

with zero mean and variance

2 2>

n= < n > (take expectation over xn)

< 2 sin2 _kx (cose - coseb)] + 2 cos2[kx (cose - coeb)]=<Resi  n kn si b Im n-

+ 2YReyimsin[kxn (cos i - coseb)]cos[kx n(cosi - cOSeb)]>

1 2 1 2
2 YRe + Yim
1. 2

2 1jY (65)
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In (65) mod (kx (cose - coseb)) is-assumed to be uniformly distributed

between [0, 2w].

If the integration time in estimating is finite, the estimated

beacon phase vector is given by (52)-

ye -

^ b*8 + C2 + y jw

+b b * 2 I +  v2e (66)
a a

•jw

ve
N

where C2 is zero mean with variance

2 2 22 2 T 1 2 2
S82a al2 + 8 0  (67)°C2  =T 2-T r

and where vI , v2 , ... vN are independent random variable with zero mean

and variance

ri 2 12a 2 + 2 B
24n al2 1
a  n 2T n

TI 22
+2I a 0 2 (68)

wi, w2, ... w N are independent random variables uniformly distributed

between [o, 2w]. The v 's are independent of the w 's.
n n

C2
Define --- A + j (69)

*re Im

is zero mean with variance
C22

2 2

-a31
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1a r I 2 a l 2 2 (70)

al 2a + FT e Or

using (55) and (69), (66) becomes

Jw1

y.e1
j W

The nth element of 5b is

ei:JkXnC°S 8 b J xcs i JWn

e' Jk e [b + (y + X)e xncs + v e ](72)
n

eikxncosb [1 + jkx (caseI - cose) i(w -kx coseb

Letv VR + jV and define

JW n jkx n (cose l-coseb) J(w n-kxncosb)
A' e =1 + (y + )e + v e (73)

n n

Proceeding as was done in going from (7) to (9) we have

I
"'n =  Re + XRe) sin[kx n(case -coseb)]

I $1+ v sin(w -kx case ) + v cos(w -kx case )(74)
nRe n n b nIm n n b
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The normalized beacon phase vector estimated is

J(kx cose + 1

.. J (kx2 cosOb + "2)

s b e e .)(75)

J(kxNcoseb + N
e

As in the case of t we can argue that n can be treated as a random error.

n is zero mean with variance

2, < (Wn )t >
n

2 e2 + Y 2 + 2 + 2 >

+ .1<v > + <Vn m
nRe

l1 I 2 1

2 4

.'r. n

I b28

22 11221 2

+~~ +-< >

2 ja12 a4 + T e2 2 m

+1 2> [T . 2> l b

2 11.2en 2T n

11 2 1

+ - an2ar2 (76)
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In (76), the dominant terms are

2441~ ~~ b 8 +T 2CL2 jl2

2 al2 4  2 a 2 .12.4 a

In order to form a beam in the direction of the beacon 
station,

the array processor will put a phase shifting vector 
which is the con-

jugate of the estimated vector, i.e. Sb

..j(kxcose + 1

e

-j(kx2coseb + *'2 (77)

=e

, -j (kxNcos b + 'NJ

We now turn to the problem of steering the pointing vector from 
the

beacon to the desired source. The basis for this approach is developed

in Steinberg [ 1 ) pp. 246-249.

Assume we have a linear array on the X axis with element positions

imperfectly known. The beacon station is in the direction eb as shown

in the figure below.

p ' BEACON
JI
II1p

0 bI Ip

ip

0 xn  xn+a n
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The steering vector for forming a beam on the beacon is given by

(77); the nth element phase shift is given by -kx cosOb - . We now

want to move the beam through an angle 0 from eb. A phase shift Yn

needs to be added to -kXnCOS b- n , T' n being determined in the following

way.

The array processor imperfectly knows that the location of the nth

element is x + 6x where Sx is the location error. To form a beam in
n n n

ebo the phase shift calculated by the array processor is -k(x n+ 6 x n)coseb

to form a beam in eb + 0, the phase shift calculated by processor is

-k(xn+ 6xn)cos(b + 0). The phase increment determined by array processor

is, therefore,

n = -k(xn + 6x n) cos(eb + 0) + k(xn + x n) coseb (78)

The total phase shift when pointing at angle (eb + 0) is the sum of the

phase determined by focusing on the beacon (the phase in the exponent

in (77)) plus the increment in (78); i.e.,

0n -kxncosOb )+ Y

= -kx cSb - n - k(x +6x ) coS(eb+ ) +  k(xn+6 ) coseb

n b n n n b nn nb

-kx cos(e + - k6x coS(O + ) + k6x cos b  (79)
n b n n b n kxceb

In (79) -kx ncos(eb + 0) is the correct phase shift and -* n -k6x ncos

(eb + 0) + k6x ncose is error. Lot en denote the error of the nth

element.
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-e -Vn - k~x CO co 8eb + 0) + k~x ncose b

=- ' - k~x cose bcos + k~x nsine sin + k6x ncose (80)

If the scanning angle * is small, cost 1 and sinO * (80) is then

approximated by

'pen - - ' + k Sx nsine b (81)

en is a function of 6bV If the array is being used for near broadside

0
reception e b =90 and sin 8 can be set equal to unity. If Sx nis zero

2
mean variance a6~ e is also zero mean with variance

2 2 +k2 02 sn2 0a2 (82)
~en =0 '~n +( inb 6 x

where a 'n 2is given by (76).

Example:

lie assume a reference dish antenna with, (1) a 30dB mainlobe to sidelobe

ratio, (2) signal and interference of equal levelboth 20dB above the noise

of each element, and (3) equal noise generated in the array elements and

the reference antenna amplifers. Thus

2 2 2 2 2 2
a 1000. b 100. 100a~oul~

The variance due to estimation is given by (76)

2 b 2B

n 21a 2 a 4

+21n B2 a 21a,2 + Tl 82c 2

21al 2 O4  T 22

+ T 2 2
+2T n ar



Using the number assumed, the terms in a are then

b2a2 a4

T 1 2 2  T 2 14

-- $ a r a O00a 40-

2T n - 100 T

1 8i2 b 20 2 Ti 1 4

T T 15 c

I 2 2 1 1 4

2T % r " 2T 1000

Therefore the variance due to estimation is dominated by

b284  + T a2 al2

21a 24 + 21a12a4 T

4 I i 000 CL4

21al Tj2,4 + 2-alZ 4

1 1A 00-- + -TO

Therefore, with T large enough (T >> 103T insures this result).

2 -1 -
-i 5 x 10-
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~2
The total variance a is

en

2 2 2 2 2 2
a ao + +k sin eb a

en n

with sin b f  , and a in wavelengths

2 2 (2w) 2

1en (20)2 6x

2
S5O-4 + US

X
0

~5xl0 4  10

-j10
0

For Fs = 0.95e , N =7, and d = 10, the standard deviation for 1 dB

loss is about or 0.04 radians. Let e = 0.04 2 0.0016 then4en

a6x Z 0. lX; this is a fairly tight tolerance requirement.

However, for Fs = 0.95, N - 7 and Yd - 10, the standard deviation for

1 dB loss is about 70 or 0.14 radians. The tolerance of element positions

is, in this case, o 0.44X;the tolerance demands are more relaxed in

this case.

We point out that in these examples the dominant contribution to

the total pointing phase error is the error induced by steering from

beacon to ground station. That is, if the values chosen for reference

antenna sidelobe levels are, in fact, realistic, the method is shown by

these examples to result in adequate estimates of the beacon pointing

phases. The adequacy of the final estimates of pointing phases to the

ground station depends now mainly on the scanning range, and the un-
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certainty in element position. If the error induced by the scanning

process were totally eliminated the pointing vector would be left with
2 -4o

an error variance of a. 2 5xlO (a standard deviation of about 1 )
7P en o

which, even with F - 0.95e - 1 0 , causes a loss in SINR is negligible.
s

I

I

'1
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List of Symbols - Appendix D

a gain of reference antenna to beacon

b gain of reference antenna to interferer

C1  random variable

C2  random variable

E[ ] expectation of [ ]

I N x I all l's vector

k wave number

th
n (t) noise at the n array elementn

n (t) noise at the reference antennar

N(t) noise vector of the array elements

r(t) output of the reference antenna

R n(t) autocorrelation function, array element noise

R r(t) autocorrelation function, reference noise

S arrival phase vector of the beacon

S estimator of S

S arrival phase vector of the interferer

T integration time

Un random variables with zero mean and variance a2  n = 1, 2, ...N

w random variables uniformly distributed between [0, 2w], n = 1, .Nn *

th
x n n element position

X(t) input vector of the array

I12 <a2 (t)>.

a(t) beacon signal waveform

<a2 (t)> expectation of a2(t)

B2  <B2(t)>

8(t) interferer waveform
(Continued)
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List of Symbols - Appendix D
(Continued)

... random variable

YIm imaginary part of y

YRe real part of y
th

6x position error of the n array elementn

n total phase shift of the n
th array element when pointing at angle

(eb + 0)

b beacon arrival angle

i  interferer arrival angle

A random variable

xIm imaginary part of X

ARe real part of A

a2  variance of C
CI

C2  variance of C
C2  2

aY2 noise power at array elements
n

.
2  noise power at the dish antenna
r

a2  variance contributed by the random terms in estimating S
rf -b

U2  variance of the error of array element locations
6x

02  variance of A

a2  variance of 0
n n

a2  variance of 0en
1en

02, variance of 4n
On n

T duration of signal chips

inverse of the bandwidth of *n(f)

T2  inverse of the bandwidth of r(f)

(Continued)
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List of Symbols - Appendix D

(Continued)

scanning angle

Ob electrical phase angle of the beacon signal at the origin

0 1 electrical phase angle of the interferer at the origin

.n(f) power spectral density of noise at array elements

r (f) power spectral density of noise at the dish antenna

then total phase error of the n array element

On phase error in the n t element of <Sb >'
th

phase error in the n element of Sb

n b

Inphase increment of the nth array element in order to scan the beamn

I

I

I
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I. INTRODUCTION

Adaptive Arrays for Communication based on the LMS algorithm of Widrow (1],

but utilizing a self-generated reference, have been subjects of study in the past

[2). These methods are based on the exploitation of a distinguishing character-

istic of the desired signal which enables it to be separated from unwanted signals.

Typically, the desired signal is viewed as being spectrum spread by a known code

so that with despreading a moderately clean replica of the desired signal is de-

rived from the array output. With this as the reference, array focusing toward

the desired signal is improved, in turn improving the reference. The scheme pro-

posed and analyzed heretofore is shown in Figure 1 (31, and is here called the

"LMS adaptive array with coded reference signal loop." Each array element is

s-na to be weighted, the weight being determined via an LMS loop driven by the

correlation between element output and array output with reference subtracted.

The limiter functions, in part, to prevent the weights from converging to zero.

A difficulty observed with this arrangement is that incidental phase shift in

the band-pass circuitry of the reference generating loop will cause the weights

to cycle indefinitely with cycling amplitude range and frequency depending on

the main feedback loop gain and on the magnitude of the reference loop phase

shift (4,51. Methods of adaptive compensation to overcome this effect have been

pursued [6]; non-adaptive correction is not apt to work because of uncertainty

of the center frequency caused by doppler shifts and oscillator frequency

errors.

An alternative circuit in which one element is left unweighted and the

limiter omitted is shown in Figure 2. To distinguish this from the previous

*1 circuit we refer to this as the "LS interference canceller with coded reference

signal loop".
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Constraining the weight of one element to be constant, the all zero array weight

condition cannot arise making the limiter unnecessary on this account. Now, how-

ever, operation will be affected by both phase and amplitude-differences between

reference and signal component of the array output. The analysis presented below

is intended to reveal the properties of this circuit with particular attention to

the weight convergence and the output signal-to-noise ration (SNI). It is shown

that under simple attainable conditions the weights do converge to a constant final

value. The configuration of Figure 2, however, generates a variable SNR at the

summer output, the SNR possibly being as low as that of a single array element

depending on the reference loop gain and phase shift. Because this may be trouble-

some to the reference generator a variant of this circuit, in which the signal to

the reference generator is the sum of weighted element outputs only (see Figure 6),

is also analyzed. The SNR at the reference generator input is, in this case,

the full value expected out of (N-1) coherently combined elements. Finally, the

SNR at the point from which signal output is to drawn is obtained.
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II. N-Element LKS Interference Canceler

An K-element interference canceler is shown in Fig. 3. The signal from each

antenna auxiliary element yi(t), i 0 0,I...N-1, is passed through a quadrature

hybrid forming pairs of components y1i(t) - y1 (t) and yiq(t) - ji(t), i - 1,2,..

N-i, where the caret stands for the Hilbert-transform (90" phase shift). Each

of these quadrature signals is weighted by real factors Wil(t) and WiQ(t),

respectively, and then summed together with the signal from the main element

YN(t) to produce the actual array output va(t). The difference between the

array output and the reference signal d(t) is the error signal e(t). Utilizing

et), the feedback loops adjust the weights Wii(t) and WiQ(t) so that the

mean-square error e t)2 is minimized.

The operations performed in Fig. 3 are represented by the following: The

pairs of signals yj(t) and yi(t) are used to express the analytic signal,

Xi(t) _ Lyi(t) _ j'i(t)]I/ (1)

The complex weights W1(t) Wil(t) + JWiQ(t) i - 1,2...N-1 act on the xi(t)

to generate an output which, in analytic signal form, is given by,

v(t) - T(t)W(t) + xN(t) (2)

where Wr(t) - (Wz(t), W2(t),...WNiCt)), xT(t) - (xlt),...xNI(t)},

T stands for transpose, and xN(t) -[YN(t) - JYN(t)]//2 is the analytic signal

representation associated with the signal from the main (unweighted) element.

The actual signal at the output of the array is given by

va(t) - Re{v(t)) (3)

and

e(t) -d(t) - v(t), (4)

where e(t) and d(t) are the analytic signal representations associated with the

error and reference signals, respectively.
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The weight are assumed to be adjusted using the steepest descent algorithm

[i]; that is, they are determined by

dW(t)/dt = -kaW Ele(t)2 ]  (5)

where AW is the gradient with respect to W, and is understood to be a complex

vector whose components are the gradients with respect to the real and imaginary

parts of W, respectively, and k is the main feedback loop gain. E(.) denotes

mathematical expectation. Following the derivation in [1], (5) reduces to

dW(t)/dt - 2kE[x*(t)e(t)] (6)

where the asterisk denote complex conjugate.

Using (6) with the instantaneous product [x*(t)e(t)] as an estimate of

the correvsonding expected value this becomes the complex LMS algorithm whose

equivalent network for one antenna element is displayed in Fig. 4. Substituting

for e(t) using (2) and (4) we get the differential equation that governs the

weight vector W(t)

dW(t)/dt + 2k%x(t) - 2kLxd - 2kE[x*(t)xN(t)] (7)

where Rx M E[xct)x(t)j is the input covariance matrix and Rxd - E[,3(t)d(t)].

In obtaining (7), using the network of Fig. 4 as a basis, an assumption

commonly made in the analysis of adaptive arrays is used. That is, that the signal

and weight processes, the latter now being a random process, are independent. W(t)

in (7) and in the subsequent work should therefore be viewed as an expectation.

For the case of a single CW signal of amplitude A arriving at angle , to
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broadside we have( t)

x(t) - AtexpiJwct]/, + (t) (8)

XN(t) - APNNexp[jwctJ/,f + nN(t) (9)

wher P (e-JQ1 e -J1200 -JGN-l) ' p -JON Iwhere pt .~G,* c* .. 1. . PN 1 
=  =1

ai - (2fLi/Xc)siln i - I...N-1 (10)

A is the signal amplitude,Ac is the free space wavelength at frequency wc, the Li

are the distances between the ith and the main element, NT(t) - (nj(t),...nNj(t))

is the noise process vector and nN(t) is noise process at the main (unweighted)

element. The noise at the ith element is written

niL(t) - niI(t) - JniQ(t) (11)

with

E[nii 2 (t)] - E(niQ 2 (t)] - an2 /2. (12)

Hence

E(ni(t)nj*(t)] % o2 for I - J, and every I

-0 i j (13)

The covariance matrix of the element output is therefore

,- + (14)

where f - A2P*PT/2.

Therefore (7) can be written as

dW(t)/dt + 2k(O + o21)W(t) -
2k-xd - kA2P*PN (15)

(t) We assume without loss of generality that x(t) contains no Interference. In

fact, the interference term will only change the matrix *.
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III. I-Element Interference Canceler with Reference Signal Loop

a) Solution of the Equation for Expected Array Weights.

When the array output v(t) is processed to produce a reference signal as in

Fig. 5, then

d(t) - [APTexp[jwct]//2 W(t) + APNexp[jwctl/r]2 ae (16)

where a is a positive constant depending on loop gain and filter attenuation

and + is a phase shift introduced by the reference loop filter. Noise and

interference entering the reference loop will be substantially attenuated fol-

lowing the filter and as a consequence d(t) is represented in (16) as free of

these influences.

Using the definition of Rxd we have

Nxd = E(!*(t)(A-exp[jwct]//TW(t)+A//YNexp[wct])ae-J*

- [OW(t) + A2 P*PN/2ae-J • (17)

Thus (15) becomes

dW(t)/dt + 2k[(1-ae-J#)4+o2I1](t)' -kA2 (1-ae-J)P*PN. (18)

The matrix 4 is Hermitian having rank equal to one.

Therefore there exists a constant unitary matrix Q such that Q'OQ - A (the prime

denotes transpose conjugate) where A is a diagonal matrix with only one non-zero

element XN-1

Premultiplying (18) by 9' we get

dr(t)/dt + 2k[(1-ae-Jf)A + a MO(t) -kA 2(1-ae-J*)Q P PN (19)

where

r(t) - Q'w(t) (19a)

(19) is obtained also using the fact that Q'Q - 1. It can be easily shown

that 9'P* is a complex vector with only one non-zero entry which equals

(/---I/AeJ6 , where 6 is some arbitrary constant. Me will choose 6 - 0.
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with rT(t) - [Y1(t)o ........ 9 yN..(t)l (19) can be written [51

dy1,(t)fdt + 2kcayi(t) - 0 £-1,26.99,N-2 (20)

- -k. ,fAI((1-ae-JO) (21)

Note that in (20) we have used the fact that X, - 0 for i - 1.2... K-2.

The solution to (20) is given by

y1 (t) - yj(O) exp(-2kcnt] 1 1,2 ... N-2 (22)

(21) is solved by decomposing it into its real and imaginary parts which

are given by

--2kAv'Xjjj77[1-acos*] (23).

dyli)d-2ai.N.i .l(t)+2k[(-acos)N..+ OnJyN...(t)

*-2kA/1jj--j77(asin0I (24)

where YN-I(t) - yr (t) + jyA-.1 t

These two equations can be written in matrix form as,

[~ _()d K -acos*) + c asin. ~ r NI
[dY~~..lk~rX/dtF + kN1( -acos+

lasin# (25)

*c - n/XN-1 (26)

Using a diagonalization transformation (see Appendix A-i) we find the solutionI to (25) to be (see Appendix A-1)

exp.[(2kAN..l( -acos#+c)t I+Cr(+)
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(fkOCi#]coeC2kXN-l aeino)t

+ [¥YA(0)-Cr(*)1 sin(2kXN. I asin#)t)

exp(-2kXNi(1-acos#+c)t] + Ci() (27)

where r - A (l-acos$)(1-acos4+c) - a2 sin2
4XN-1 (1-acos+ )2 +.a2sin 2# (28)

C _ A asino(2 - 2acoso + c)
IN-1 (1-acos+ )2 + a2sin 2# (29)

b) Stability Condition

Stability is viewed as requiring the expected value of the weight vector

W(t) to converge to a constant steady state value. This, in turn, requires

the vector r given by (19a) to approache a constant. The components of r, Yi,

i - 1,2...N-1, must therefore converge. The first (N-2) components given by (22)

will converge for k > 0. For yr_ 1(t) and 4._l(t) to converge to the

final values Cr(C) and Ci(#) respectively, it is necessary and suf-

ficient that

1-acos # > -c

be satisfied. Furthermore, one can show that AN- = (N-1)A2/2 and there-

fore using (26) this condition becomes

I - acos # > -2o2/A 2 (N-1) (30)

For this to be satisfied for any signal-to-noise ratio (A2/2o ) it

is sufficient to require that

acos # < 1 (31)

jIn particular if we choose a<l the system converges to the steady state re-

gardless of the input SNR and/or the amount of phase shift in the reference loop.
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c) Array Output SNR

The complex envelope of the desired signal at the array output is given by

s(t) - (Al!) [PTW(t + eN]

- [A) PTgr(t) + eN]

By using (20) we get in the steady state

lim s(t) - (AM l) Ifq ( + P I
tN-1 N

where q, is the last column of the matrix Q. By definition Q * (A2/2)'P*PQ A.

therefore (A//)PTq - T and

tim s(t) = yN-1(a) v.j + AI! (31a)

If the stability condition is satisfied then lim s(t) exist and the output desired
t4"M

signal power So is given by

so M 'N-I(') r)N-1 + A//212  (31b)

With YN-I(m) - Cr() + JCi(), and using (28) and (29), we obtain

so M A
2 [(1 + c4(. ) + a12(#)1/2 (32)

where

t(2)r - Cr(#)/2N.XN_/A (33)

at(f) - -Ci(4)V/XN:_/A (34)

Also the noise power is given by

No - a n2(lIN-l(-)12 + 1)

- On 2 (A2 /2XN-(cr 2 ($) + 0L2(#) + iJ

Since X (N-I)A 2/2, we have

No = 0n
2[((/N-I)(% 2() + c 2 () 1 (35)

From (32) and (35) we finally write for the output SNR
So . A2(N-I) [or 2(*) + ai2(#) + 2ar(4) + I

70 2n %Z( ) + ut(.) + N-I

A 2 (N-) (2-2acost + c)2

2On z  N[(I-acos*+c)4 + a'sinZ*)-c(2-2acos++c)] (36)
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The last step is obtained in (E.13) of Appendix A-2. Note that in contrast to

the LHS adaptive array with coded reference loop as treated by Compton and DICarlo,

here the output signal-to-noise power ratio depends on the reference loop phase

shift and gain. This ratio is less than A2(N-1)/2a.2 for most practical

cases (see Appendix A-3) if we choose a to be less than one. The output SNR may

even fall to the output SNR of a single element, A2/2on2 (see Appendix A4).

From these results it is evident that in the network of Fig. 2. The array

element outputs are not being maximally combined to give the expected array gain

of an N element array. In particular, the variability of the SNR at this point is

apt to affect the performance of the reference generating loop. However, we now

show that utilizing only the weighted element outputs as reference loop input one

gets an SNR close to the maximum and not dependent on the parameters of the refer-

ence generating loop.

The sum of the weighted array element outputs (auxiliary output) alone Is

Vau(t) XT W

and the signal component is

SSaut) - AETWt)IT

This can be expressed in a form similar to (31a) with the component contributed by

the unweighted element deleted. Thus

lim Sau(t) - YN_1C-),/-N_1,t~m

and the power of the desired signal at the auxiliary output is

Soau - IYN-1(_)IXN_1 (37)

The corresponding noise power is similar to (34a) with the contribution by the

unweighted element deleted. Thus

Noau M an2 1 yN_(-)12  (38)I and the signal-to-noise power ratio

(So/No)a "N-l1/0n 2 - A2(N-I)/ 2an2 (39)
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The array gain of the (N-1) unweighted elements is therefore realized; that

is, the weights adjust themselves to coherently combine the output of the weighted

elements and to provide maximum SNR. However, the resultant weighted output is

not coherently combined with the output of the unweighted element; the SNR of the

combination depends on the parameters of the reference generating loop and has a

value generally well below that of the combined unweighted elements.

We now propose a modified circuit which takes advantage of the foregoing to

provide constant SNR to the reference loop, but which also combines the weighted

and unweighted element 3utputs to give a good final output SNR.

IV. Alternative Arrangement for Extracting the Reference Signal

Signal

The system arrangement depicted in Fig. 6. is proposed to overcome the

problem discussed above. Here the reference signal d1(t) is given by

d I(t) - a XT(t)W(t)e-JO

where a and # are gain and phase shift in the reference loop. Consequently,

!xdl - E Ix (t) T(t)W(t)J ae-J
O

M *(t)ae-J4 (40)

Instead of (18) the weight vector W(t) will be governed by

dW(t)/dt + 2k[(-ae-J)O + an I]W(t) - -kA2P*PN

where, P and PN and 6 were defined in connection with (8), (9) and (14).

Following the same procedure as used earlier two equations in -_l(t) and

yh-(t) similar to (25) are obtained with the right hand side being

-2 kA/N-1/2[l). The solution to these equations is given by (27) with
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A (1-acoso + c)

(1 - acos# + c)2 + a2sin 2* (41)

Cl(O) - A A asin#

N (l - &cos# + c)2 + asin2* (42)

The stability condition remains exactly the same (eqs. (30) and (31)). Even

though the final weights different from what they were in the previous system set

up, the output desired signal and noise powers remain as they are given by (37)

and (38), respectively. Therefore the SNR of the weighted element output, which

Is also SNR fed through the reference loop, equals A2(N-1)/2o2.

a) Output SNR

Signal output in the configuration of Fig. 6 is taken from the point where

weighted and unweighted elements are summed, as shown.

The desired signal and noise power output at this point are given by (32) and

(35) respectively, with Qrl(o) and ail(f) used instead of Qr(O) and

ai(#), and with

rl() - Crl(#)/2"NI/A (43)

al - - Cil(#).'ZN/A (44)

Crl(*) and Cil( ) are given by (41) and (42). Using appendix (A-5) we write

for the output SNR
2 )2 ( 2a

so A2 (N-,) [ rl (*) + ii*) + ri(O)_+

No  2on 2  Url2(f) + Qli2() + N-1
(45)

A 2(N-1) (2 - acos4 + c)2 + a 2sin 2

20n 2  (N-I)((l - acos#+c) + a'sin'#)

As in the case of the configuration of Fig. 2, with the configuration of Fig. 6

the output SNR depends on the reference loop phase shift and gain. This ratio
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exhibits a maximum value when the phase shift is the smallest, * - 0 (provided

that N 3, or else for N - 2, A2/20n 2 < 2.5 is necessary). If furthermore

a a I then for most practical cases the output SNR is approximately equal to

its optimal value A2(N-1)/2on2 (see Appendix A-6). Therefore, from the

point of view of output SNR the configuration of Fig. 6 is preferable to that

of Fig. 2.

V. Conclusion

We have here reported an analysis of the properties of an adaptive array

based on the LMS algorithm with a self-generated reference. Circuits hereto-

fore proposed, analyzed, and tested had been reported to suffer oscillatory

weight instability when the reference generating loop shifts the phase of the

signal component of the array output. The scheme examined here is a variant

of the earlier scheme in which one array element is left unweighted and the

reference generating loop is operated without a limiter. As a consequence the

signal output of the reference generating loop is not fixed in amplitude and

may differ from the signal at the loop input in both amplitude and phase.

It was found that in this mode of operation, stable nonoscillatory weights

are obtained in the steady state provided certain mild conditions are satisfied on

the gain and phase shift of the reference generating loop. Two alternative ways

of driving the reference generating loop were examined. In the first, the sum of

all array element outputs were used to drive the loop. Here it was found that the

SNR entering the loop was highly variable being, under some conditions, nearly equal

to the SNR of a single array element. This result was not viewed as a desirable one

and an alternative in which the reference generating loop was driven by the weighted

elements alone was then studied. Here a constant high SNR to the loop is obtained

and, under reasonable conditions of loop gain and phase shift, a high (though mod-

erately variable) signal output SNR.
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Arrays of the sort here discussed are used where adaptive Interference can-

ceiling Is sought. The analysis reported here as well as that reported earlier on

other circuits with a self-generated reference signal deal only with desired signal

plus noise. Clearly, all candidate schemes ought to also be examined with inter-

ference present and the output ratio of signal to interference plus noise deter-

mined. This will undoubtedly be done. As an interim measure we have also

determined the component of signal power in the residue entering the array

control processor. The details are not reported here but the analysis showed

that the first circuit resulted in domewhat less signal power at this point

than the second circuit. The reason for concentrating on this quantity is

the expectation that the scheme generating a smaller signal power residue will

be a more effective interference canceller; the-desired signal would then not

mask the interference and it would be the latter which mainly influences the

weights generated.

E- 14



Appendices

A-1 By using the following information

0[t;j 4- 1(t)'

(25) J [ J(E.1)
d0(t)/d 0

dP2(t)/dt, 0 I -acos#+c+jasin#' P2(t)

1-acos +jasin*

-2k.')*._1/2 I](E.2)
Ji( -acos#)+asin#

(E.2) yields two disjoint differential equation in pl(t) and p2(t). The

solution of which is given by

+ C1(. (E.3)

P2(t) aIP 2 (0)-C2(#)J expl-2kAXN...(1-acos.+c+jasin.)tJ

+ C2 4.) (E.4)

where

Cl( ) - - A 1-acos4 + Jasin4

1'2)N-1 1 -acos + c - jasin+ (E.5)

-2) - A J(1 - acos4) + jasin*
i'21N..1 1I acos# + c + jasin* (E.6)
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Transforming back by using the transformation of (E.1) we get

YNl(t) - {[Y6_l(0) - Cr(#) ] cos(
2kLN-lasin#)t

_ (YA-_(0) - Ci(#) ] sin(
2 kXN.lasin#)tl

exp[-2kXN-1(l - acose+c)t] + Cr() (E.7)

Cr(*) is given by (28).

A-2 From (33) and (34) together with (28) and (29) we write

ar() - b12(t) - b2
2 (.) + cb(O)

b12(#) + b2 2(.) + 2cbl(*) + c2(E.8)

- 2b,(#)b2 (0) + cb2() (E.9)
b12( + b2

2(#) + 2cbI(j) + c2

where

bl(#) - I-acoso (E.1O)

b2( - asin# (:.1l)

Thus
ar2 () + ai2() " (b1

2(.) - b2
2 (.))2 + c2(b 12() + b2

2(.))

b12 (#) + b2
2 (#) + 2cbl(o) + c

2

+ 2cb 1 ( )(b1
2 (.) + b22

b 2(#) + b2
2 (,) + 2cbc() + c2

Sb12 (#) + b2
2 (.)

b 2(*) + b2 2 () + 2cbI(O) + c2 (E.12)

Also

3b1
2 (#) - b2

2 (#) + 4cb l(t) + c
2

b1 2(() + b2 2 (*) + 2cb l(#) + c2

so that

a ( * ) + ai 2 ( , ) + 1 - _ ( 2 b l (_)_
+ _
c ) 2

arW+ iW 2 2 2b1 (#) + b2 (f) + 2cbI(O) + c
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Finally

ar 2(#) + Q,
2(#) + N-1

-(2b I. +c2

N~b 2#)+ b2
2(4) + 2cbl(+) + c2) - c(2b,(#) + c)

2
- (2 - 2acOS4 + c)

N((I-acos,#+c)2 +- a2sin#) - c(2-acos*+c) (E.13)

where in the last step we used (E.l10) and (E.11) .

A-3 To examine the dependence of SO/No on the reference loop phase shift, of

the circuit of Fig. 2 we rewrite (36)

s(a, ) -I((2 - 2acost + C))
No c N((I-acos4+c)z + azsin4,) - c(2-2acosf + c) (E.14)

where c - 2an2/A2(N-I)

Setting caS0/N0(a,.)/a. 0, yields the equation

2(2 -2acos*+c)2asinO(N((I-acos#*c)2 + a2sin2 6) - c(2 -2acos*+c)J

-2(2 - 2acos*+c)2(N(2(l - acos#+c)asin# + 2a2sin~cos#) -2acsinoJ

0 CE. 15)

The stationary points, therefore occur under one or more of the following

conditions.

1) 2-2acos + c + 0 (E.16)

or, acos. - (c+2)/2. This condition cannot hold for a <I and c 0

or, #in0 since a 0 (E.17)
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2
3) 2N((1-acos +c) + a~sin2 (#)) -2c(2-2acos#+c)

-(2-2acost+c) (N+c(N-1))

which implies

2-2acos*+c - 2N(1-a2+c)/(N+cN-c) (E.18)

The values of SO/No at these points are, respectively

1) S0/N0 - 0

2) S_/NO M 1 (2-2a+c)2

C N(1-a+c)2 - c(2-2a+c)

2 (N-i) (2-2a+c) 2  
(E.19)

2 a2 -N(1l-a+c)7 - c(2-2a+c)

It is possible to show that if we choose a 41 for this case; (i.e., * -0),

then the second factor of (E.19) decreases with c. Therefore SO/No is uipper

bounded by

SOINO r.'A(N1) 4(1-a)2

2on 2 N(1-a)2

2
-A (N-i + (4-N)CN-1)) (E .20)

2an N

The upper bound is larger than A2(N-1)/2an2 only if N < 4. It equals

A2N/2on2 when N - 2, and approaches A2/202.4 for a very lprge N

3) SO/NO me A2(N-1) (4N(1-a2+c)j (E.21)
20 (N+cN-c) 2

Again, it is possible to show that if we choose a < 1 then the second factor of

(E.21) decreases with c and hence

so IN (A2(N-1)/2a%214(1-a2)/N

The upper bound can be greater than A2(N-1)/2 n 2 only when N 44, and

equals A2N/2an2 when N 42. This upper bound is attained when c is

very small. To conclude we notice that the output signal-to-noise ratio depends
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on # and it is less than A2(N-)/20.
2 for most cases of practical interest.

A-4 To examine the dependence of So/No on the reference loop gain in the cir-

cuit of Fig. 2 use (E. 14) to write

O(So/No)/aa - 2[2-2acos4+c)(-ccos#(N+Nc-c-2)

+ 2a(cos2#(N+Nc-c)-N-Nc/2]

Stationary points occur under one of the following conditions

1) (2-2acoso+c) - 0 (E.22)

or a cos# - (c+2)/2. Again, this is not valid for a 4 1 and c * 0

2) a -ccoso[(N-2)+c(N-l)] (E.23)
[(l-cos2+)(N+cN/2)+(c-cN/2)cos2#]

This point is a maximum or minimum depending on whether cos2# is less or greater

than (N+Nc/2)/(N+Nc-c) respectively. But

1/2 4 N+Nc/2 4 I (E.24)
N+Nc-C

for N 2 and any c. Therefore for cos# - I, the minimum point occurs at

a - 2 if we assume c is small. From (E.14) for # - 0 and a -1 SO/No = A
2/2an2.

while for # - 0 a 2 0 So/No = A
2(N-1)/2anN.

A-5 Using (43) and (44) together with (41) and (42) we write

r ) bl(O) + c

b12(-) + b2 2() + 2cb l(#) + c2

, b2(W

b 2 (#) + b22 (.) + 2cb,() + c

where bl(#) and b2(W) were defined in (E.10) and (E.11). As in Appendix A-2

we now haveI 2[(* + 1[(
)

2 22b1 2 () + b2 (#) + 2cbl(#) + c
2
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Also 2Arl(s)+ 1 - (bl(#)+c)(bl(*)+c+2) 
+ b2(#)

so that 
b,2(#) + b2

2(#) + 2cbl(*) + c
2

so that

c~'()+ czg1 + 2 arl(#) + 1

(bl(#) + c+1)2 + b2()

(bf(+) + bj(#) + 2cb1(*) + c
z

Finally

rO + c21(f) + 2 r(#) + 1*

+ 02il(O) + N-1

(bl(#) + c+1) 2 + b()

(N-l)[b2(#) + bj(#) + 2cb1 (#)+c
2] + I

(2-2acos4ic)2 + a2sin2*
- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _(E.25)

(N-1)(1-acos#+c)
2 + a2sin

2#] + I

A-6 To examine the dependence of (So/No)1 on the reference loop phase

shift * of the circuit of Fig. 6, we write (45)

(So/No),(a,#) - 1 ((2-acos*+c) 2 + a2sin24
c (N-)[(l-acos +c)2 + a2sin 2#] + 1

Hence ca(So/No)1 (a,*)/3* = 0 implies that

2(c+2) asin+((N-1)((1-acos#+c) 2 + a2sin2*) + 1)

-(c+1)(N-1)asin[((2-acos +c)2 + a2sin 2#] 0 .0 (E.25)

After some manipulation one can show that (E.25)is equivalent to

2asin#[(N-1)a 2 - N(c+l)(c+2) + (c+2) 2] - 0 (E.26)

A solution to (E.26) is given by

asin # - 0

which implies -0 since a * 0 (E.27)
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For this value to be maximum it is necessary and sufficient to have

a2 <[N(c+1)(c+2) - (c+2)2]/(N-1) (E.28)

The right hand term of (E.28) is increasing with c. To make this term greater

than or equal to one and consequently (E.28) to be satisfied for every a < 1, it

sufficient to require

3 4 N + (N-2)(c 2+3c) + c2 + 2c (E.29)

This is satisfied for every c if N > 3 or when N - 2 provided that >0.4

(or A2/302<25)

The value of (So/No)l at * - 0 is given by

(So/No )l - 1 [. (2-a+c)2  I

c (N_)(1_a+c) 2 +1

If c is small enough then

- A2(N-1) [_ (2-a)2  (E.30)

(N-)(1-a)2+1

If c is very large then

(SoINo)1 u A2/202 (E.31)

However, c large is not a practical alternative. If a is close to unity then

(SoNo - (A2(N-1)/2q2)[(l+c)2/(N-I)c
2+1)]

(N-1)c2 - (2an/A2)2/(N-1) which is much smaller than unity for reasonably

large N and practical value of noise-to-signal power ratio of a single array

element. Therefore (So/No)i is approximately equal the optimal signal-to-noise

ratio A2(N-1)/2o2

To conclude we notice that the output signal-to-noise ratio of this config-

uration also depends on the reference signal loop parameters, a and +. However,

for u 0 and a u I the output signal-to-noise power ratio approaches the optimum

value A2 (N-1)/2ao for most of the practical cases.
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List of Symbols -Appendix E

A desired signal amplitude

''a constant dependant on the limited level and filter
attenuation of the reference extraction loop

c defined to be a 2 A_

d(t) reference signal

d l(t) reference signal for alternative arrangement

E[ I denotes expected values

e(t) minimized error signal for LMS algorithm

T identity matrix

k gain constant for LMS algorithm

N number of elements

Nt t) noise process vector (1 x M)

N 0noise power at array output

N 0ainoise power in v a

n NW) noise process at main element

p t input signal's phase vector (I x N)

P N phase at main element

Q unitary diagonalizing matrix

R input signal autocorrelation matrix (11 x N)
x

R xd input-reference signal cross-correlation matrix (N x N)

R xd1  input-reference signal cross-correlation matrix for

alternative arrangement (N x N)

S 0output desired signal power

oWdsrdsga taryotu

S(t) desired signal at array output

S (t) signal component of v a

(Continued)
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List of SyMbols - Appendix E

(Continued)

vt) array output

v (t) real part of v(t)a

v a(t) sum of the weighted array element outputs

w t(t) array weight vector (1 x N-l)

wi (t) weighting factor for Yii(t)

WiQ(t) weighting factor for yiQ(t)

x (t) the system's input vector (1 x N)

Yi W) signal at ith antenna element

Yii(t) equivalent to yi(t)

YiQ(t) Hilbert transform of yi(t)

S(t) signal at unweighted main element

a ai  incoming phase of input signal at the ith element

r (t) Q' w(t)

uncoupled complex array weight vector (1 x N)

Vi(t) elements of rt(t)

Y r (t) real part of the ith uncoupled weight Yi(t)

Yi(t) imaginary part of the ith uncoupled weight Yi(t)

A uncoupled signal autocorrelation matrix (N x N)

A free space wavelength at frequency cc

Xln_ the only nonzero element of A

2a noise power present at each element

arrival angle of input signal

wc  narrowband center frequency of input signal

I 1 denotes magnitude

(Continued)
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List of Symbols - Appendix E

(Cont inued)

denotes Hilbert transform

* denotes conjugate

t denotes transpose

denotes conjugate transpose
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Effect of Interfefence on the Behavior of

an LMS Adaptive Array with Reference Signal Loop

Abstract

A phase shift in the reference loop extraction scheme of adaptive arrays

utilizing the Widrow LMS algorithm has been shown to cause cycling of the array

weights in an interference free environment. Under the same conditions a com-

pensation scheme proposed by Bar-Ness [31 was shown to force the weights to

converge to a steady-state value. This paper investigates the compensated

scheme in a multiple and single interference environment. For the case of

single interference, it is shown that the array weights of the compensation

scheme will converge to a steady state constant value while those of the uncom-

pensated scheme will continue to oscillate.

I. Introduction:

Recently adaptive arrays have been attracting much attention. One reason

is that these arrays can be used to null an undesired signal coming from a

different source location than a desired signal. By doing this, adaptive ar-

rays can be used as automatic beam steerers as well as interference cancellers.

One popular scheme used in adaptive array systems utilizes the least mean

square (LMS) algorithm proposed by Widrow et al [1). The scheme, however, re-

quires a reference signal which correlates with the desired signal to be ex-

tracted. Obviously, the reference signal cannot be available apriori to the

receiver and must somehow be extracted from the incoming inputs to the system.

One way of extracting a reference signal is by using a narrowband signal

while having broadband interference. Then by use of a narrowband filter the

interference Is attenuated while the desired signal passes through and is used
as a reference signal. This condition can be met by use of spread spectrum
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methods. By this method, the desired signal's spectrum is spread by multiply-

ing the signal by a pseudo-random code at the transmitter. Then at the receiver

the incoming signals are multiplied by the same pseudo-random code. This

process despreads the desired signal making it narrowbaid and at the same time

spreads the interference making it broadband. Thus the reference signal can

be extracted by use of a narrow band filter.

One problem with this scheme was first shown by Compton and DiCarlo 121.

They demonstrated using an interference free input that a phase shift introduced

by the narrow band filter in the reference signal extraction loop causes the

array weights to cycle. This work used a single array element and, DiCarlo [4J

later extended the analysis to an N-element array and was able to attain the same

results. Here a basic problem lies in the fact that the reference loop phase

shift is a function of the incoming signals center frequency and cannot be known

apriori. Thus, it cannot be compensated for all incoming signals, and under a

wide range of nonstationary environments.

With the weight cycling problem in mind, Bar-Ness (31 added an adaptively

controlled complex weight into the reference loop (Fig.5). This complex weight

was shown by Bar-Ness to effectively compensate for the reference loop phase

shift. Bar-Ness also showed in his analysis that with an interference free

input this extraction scheme causes the array weights to converge on a steady--

state value.

It is the purpose of this paper to examine the effect of interference on

Bar-Ness's results. This first will be done for the general case of a multiple

interference environment, then we consider the special case of a single inter-

ference.

For the multiple interference case it is shown that the reference loop

phase shift is compensated for, however, a general condition for weight conver-
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gence has not yet been found. For the single interference case a sufficient

condition for convergence is found. The uncompensated case of Compton's array

will also be examined and it is concluded that the existence of interference

will still result in weight cycling.

1I. Array Element Weight Controlling Equations:

A basic schematic of the narrowband adaptive array processor is shown in

Fig. 1. The Incoming signal to each of the N antenna elements is split into

its in-phase (Xii) and quadrature phase (Xiq) components giving 2M inputs to the

system. Each input is weighted by a real factor wil or wiQ and then summed

to produce the array output v(t). An error signal e(t) is produced by taking

the difference between a reference signal d(t) and the array output v(t).

The weights are controlled such that the mean square of the error (e2 (t)) is

minimized.

Following the results first made by Widrow [1] the weights are controlled

according to the equation:

dw (t) - [- ]()

dt -5; i

where k is the main feedback loop gain, and the overbar stands for expected value.

Realizing that we represent the array output analytically be

Sv(t) =xt(t) w(t) (2)

where:

wt(t) = {wI(t), w2(t), ... wn(t)} (3)

wi(t) = wii(t) + JwiQ(t)

xt(t) = {Xl(t), X2(t),..., XN(t)} (4)

Xi(t) - Xii(t) + JXiQ(t)

t - indicates transpose
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Using (2) we can define the error signal as

e(t) = d(t) - v(t) - d(t) - xt(t)w(t) (5)

Substituting (5) into (1) and evaluating the partial derivative we get from

Widrow [i]

dw(t)/dt - 2k (x*(t)e(t)) (6)

-2k (x7(t)d(t) - x*(t)x(t)w(t)) (7)

or

dw(t)/dt + 2k Rx v(t) - 2k Rxd (8)

where:

Rx - E[x*(t) xt(t)] (9)

Rxd - E[x*(t) d(t)] (10)

and E[ ] denotes the expected value.

Notice that Rx is the input auto correlation matrix and Rxd is the input-

reference signal cross correlation matrix. Also, using eq. (6) we see that

the feedback network of Fig. (2) can be implemented as a weight controller.

For the case of one continuous wave (CW) signal and a-interference signals

arriving at angles * and X(i(i-l,..m) respectively with reference to broadside

(Fig. (3)), we can represent the input vector of eq. (4) as
3

x(t) - A/I2 Ps + Bi/F PI + N(t) (11)
i-i i

where, Nt(t) - [nl(t),n 2(t),..,nN(t)] is the noise process. A is the desired

signal amplitude. Bi is the amplitude of the ith interferer. And assuming

a nonlinear array

Pst e [I, e e (12)

P Ie-jpi(t 11, e , e . . . . e n (13)

4where aj - 2wLj/Xc sin * and bij - 2wLj/Xc sin Xi, and ps

and pi are the incoming phases of the complex envelope of the desired signal
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and the ith Interferer respectively. Li is the distance between the first

and jth input element. Xc is the free space wavelength of the centerband

frequency of the input.

Using (11) in the definition of the input autocorrelation maxtrix (i.)

and assuming that the noise, signal and the m-interferer. are uncorrelated we

can say that
a

R. * + 1 01 + a (14)
i-2

where a2 is the noise power, I is the identity matrix, and *s and *iare

defined as

08n* 2P (15)
. 2 s 8

i2 111

Using the definition of Rx (14) in (8) we get

m
dw(t)/dt + 2k(ts + 4*1 + 2,I)w(t) 2kRxd (17)

Equation (17) describes the controlling equation for each of the element weights.

Using the scheme of Fig. (4) to extract a reference signal (d(t)) from the

array output (v(t)), and assuming wide band interference with a narrow band de-

sired signal, it can be easily shown [21 that the reference signal is given by

a(Ptw(t))
d(t) - e-J* (18)

I Pl w(t)l
where, a is a constant depending on the limiter level and filter attenuation of

Fig. (4). * is the phase shift introduced by the reference loop and is depen-

dent on the frequency of the incoming desired signal.

Investigating the system described by equations (18) and (17) with no in-

terferences (0it= [01), DiCarlo [4) demonstrated that the weights would os-
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ciliate at a radial frequency dependent upon the reference loop phase shift (0),

the signal and noise powers, the feedback loop gain (k) and the number of array

elements.

III. Phase Compensation Scheme

To contend with the problem of weight cycling caused by the non-zero phase

shift of the reference loop extraction scheme (Fig. 4), Bar-Ness [3] proposed

the adaptively controlled phase compensation scheme of Fig. (5). This scheme

introduces a complex weight yr to the reference extraction loop, where wr is

adaptively controlled so that it minimizes the phase difference at point I and 2

of Fig. (5). As seen this controlling is done by the use of an integrator and a

multiplier which together form a correlation loop between el(t) and the orig-

inal reference signal now renamed y(t). From Fig. (5) we see that el(t) is the

difference between the compensated reference signal and the array output v(t).

Thus as the correlation loop minimizes the mean-square of el(t) the phase

difference between the reference signal and the array output is also minimized.

Analysis of Phase Compensation Scheme:

Following Bar-Ness's analysis, it is seen from Fig. (5) that the governing

equation for the added complex weight wr(t) is

dwr(t) 2krY-(t;elt) (19)

dt

where from (18)

a(Ptlw(t))
y(t) 8 e-j¢ (20)IPstw(t)l

and from Fig. 5.

el(t) - cY(t)wr(t) - xT (t)w(t) (21)

Noticing that the newly defined reference signal d(t) is equal to the sum of
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the product tyi(t)vr(t)j and an amplitude ' aited version of [I(tOvr(tOj we

get

d(t) - y(t)wr(t) + b, Iy(t)w r(0) (22)

But Iy(t)I - a which is the first limiter level. Thus (22) becomes

d(t) - y(t) [wr(t) + b, vr(t) (23)

Now that the reference signal (d(t)) is defined for our system ye can use it

to describe the input-reference cross correlation matrix (Rxd -E[x*(t) d(t)I).

Substituting from (23)

Rxd - E[x*(0) y(t)[Vr(t) + b, wr(t)I~ (24)

Substituting for y(t) from (20), (24) becomes

- v[* t w(t) [ r(t) + biwr(t) Ji](25)

**~ L IPtv(t)I IVr(0)I

Using the assumption that the incoming signals are uncorrelated with one ancther

* we see that

E[x"'(t)Pti - AP *Pt 0

8 2 A s(26)

Using this in (25) we get

.1Rd F- I IP~(t) Haw(t) + Ivr()I _ (27;

Now having Rxd defined by (27), the element weight equation (17) becomes

dw(t) + k( + 2 ) W(t)..(8

IV- A IPsv(t)I1a r~t +Ivr(t)j-J
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Having the element weights defined by (28) we turn our attention back to

the phase compensation weight wr(t). By substituting equaicon (21) into (19)

we get

dwr (t)/dt - -2krEfy (t)(Cy(t)Vr(t) -xtwt)J(29)

But y*(t) y(t) - y(t)12 = a2  (29a)

And by using the definition of y(t) from (20), (29) becomes

dwr~t)/dt - -2kr[ca2wr(t) - E[(aP;w*(t)/IPtw(t)l)xt(t)w(t)ei*I

where: 'stands for transpose conjugate (29b)

Since P~w (t) is a scalar we can see

P;W*(t) - w (t)p* (290)

and using (16) we can revrite (29b) as

dwr(t)/dt - -2kr(ca2vr(t) - ail/A (04(),w(t)/IFtv(t)I)eJ1j

(30)
or

dwr (t)/dt + 2kras v(t) M /2 r A w' )9 t 1eJ#

Using the fact that 4. and 41 (1--1 to m) are all of rank 1 and complex

Hermetian matrices, we see that is of rank <m and using Appendix A we

can find a unitary matrix Q such that

A~n'5 0A . . (31)

J1 00

114Q' iiQ - i 0 (32)

. . . . . .. 1 . . . ..0

where
-i positive, real I j (33)

3 ij -qije iii i j (34)
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Premultiplying (28) by Q' we get

m2
Q'dw(t) + 2k Q'(0 8 + 1 4 + an)Q 0' W(t)

dt i-i i

(35)

=2Fk Q4 8.Q Q'w(t) [aw(t) + biwr(t) ...j,
A IP~w(t)I w Iwr(t)I

Defining r(t) - Q'w(t) - Fyi, Y2,--- YnJ (36)

Using (31), (32), and (35), (36) becomes

dr(t)/dt + 2k[A5 + A1 + 2~~rt

. 2/2k As___ r(t)[a v (t) + blwr(t) ie-J (37)
A Iptw(t)! Iwr(t)I

Evaluating IPtw(t)I we get

25t Iw(t)I - [PtW(01 I [p t(t)1]1/2 _ [w,(t)p~ptw(t)Jl/2

8 8 (38)
or

SpwtI-['tQQPPQQ~~~l2 W t- ~ ) /

s 6 A2  8

- [r'CWA r(t)]11
A

Using the definition of As [(311 and (36), (39) becomes

Iptw~t)I -1 '[1Y 112 AJ]1/2 . 'vIjjjXj (40)
A A

And (37) becomes

dr(t)/dt + 2k[A9 + AI On rt

Al bi (t) ~
2k-- -rt[aw w eJe (41)

/A~ylI r Iwr(t)I*1 From (31) and (32) we see that (41) can be written in the form

dyi(t)/dt + n 2 ik t a2 0+ if. ..... N (42)

nn -.t)-

dy,(t/dt + 2k(j~~~ + 2n oi i=2 .. 1 (43)
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m+i

dy1 (t)/dt + 2k[ I q, yJ + (A, + 2)YI]

blwr(t) j -f( 4

2k o'A1 [
11(t) I [awr(t) + ]e-J* (44)I lcWI Iwr~t)l

Turning our attention back to the reference loop weight Wr(t), we see

that by substituting (40) into (30) and using (36) we get

dvr(t)/dt + 2krca2wr(t) - 2a kr r(t)Ar(t) J  (45)IY114-
or

dwr(t)/dt + 2krca2wr(t) - 2a kr ' l7IyleJ" (46)

At this point it is noticed that eqs. (42),(43),(44), and (46) are a set

of N-complex nonlinear differential equations which describe the response of the

system weights. Looking at (42) we see that [N-(m+l)] of the weights will

exponentially decay to a steady state value of zero. Or solving (42) we see that

-2ko
2 t

Yi(t) - YI(O) e n i - M+2, ... N (47)

To solve for the remaining M+I weights plus the complex weight wr(t) we

define:

yi(t) = Pi(t)e (48)

wr(t) - Pr(t)e-J*(t) (49)

where Pi(t) and Pr(t) are assumed non-negative. Using (48), (49), along with

(33),(34) we can rewrite the system weights equations [(43),(44),(46)) as

m+l -J(e(t)+Pij)
d[P-(t)e-J I dt + 2k[ I q+ Pi e (50)

jai (OiiJ

dfP1 ( i+( I/d Pi(t)eJ t)n -10 -2, ... 1+1

-je1() -(ej(t)+Plj )d[P,(t)e-Jl I)/dt + 2k[j q+ Pj(t)e

+ (X + 02)Pl(t)e i = 2k-e ([aP (t) + bile ( 1)
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d(Pr(t)e-J*(t)]/dt + 2krca2p (t)e-iII(t) - 2akriite (2

Evaluating the derivatives of (50), (51), (52) we get

dP±(t) -iei(t) -e()dO1(t) j + -( 2k[j'jjj
JPi(t)eI I+ kll Pte J

+ aPi(t)e1  ()- 0 1-2, .... 14+1

3(53

dP1(t) -OIe(t) -iO1 (t 1d81(t) J+ -0 2k!j
- JP,(t)e I 2jIq+ Pj(w)* j4Pi

dc dt jII

+ (A, + on)PI(t)e ~()

W kAIc e () I[aPr(t) + blie (54)'

dt dt

-2akriX P(t)eJ' (55)

Ale (t) J91(t)Multiplying both sides of (53),(54) and (55) by ei e and eJ*(t)

respectively and equating the real and imaginary parts of each we get

dP,(t)/dt + 2k! j qijPj(t)cos(ei - ej- pij) + o~p1 (t)J - 0

i - 2, .. . t4+I (56)

dP,(t)/dt + 2k[ I qtljPj(t)co(e 1  n j ~ + 4

2k/Aj[aPr(t) + bljcos (. + *)(57)

dPr (t)/dt +2krca Pr(t) - 2akr,/AIPI(t)cos(# + *)(58)

it)dei(t) 13+1 + i
Pitt- 2k! I qIJ P j(t)sin(e8j e - j) 0

it j = 2, . . . . M +1 (59 )
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deI(t) 2++
1  t ) - 2k[ I qljPj(t) sin(01 - j 01j))dt J-1

, 2k/iXOPr(t) + biJ sin(# + *) (60)

(t)d*(Q ) -2k(1
Pr t - -2akrIPi(t) sin(# + )(61)

Looking at equations (58) and (61) we see that the compensation weights (wr(t) -

Pr(t)e-J*(t)) controlling equation is not affected by the Interference. Thus

we get from Bar-Ness [31
t

Pr(O)cos(#io1+O)+2kra4AnfOPI(t)exp(2krca2T)dT

Pr(0 ) sin(#10 + *0) (62)

Also, if PI(t) is bounded away from zero, and assuming it is positive then

for sufficiently large t we have

f(t) =_ -V(O (63)

Thus the refernece loop phase shift is compensated for and the weight equations

(56), (57), (58), (59), (60) and (61) reduce to

dP+(t) 2k[Iq+ PjCt) cos(e1 - ej- ( + 2)Pl(t)

dt joli (l+O

= 2kvi'X[aPr(t) + bil (64)

dpi(t) m+1
+ 2k[ I qijPj(t) cosCe i - ej- Pij) + (O2Pi(t) - 0

dt + (nW1t

I = 2,...M+1 (65)

dPr(t) + 2krca 2P(t) = 2ak MP Ct) (66)

dt r r r

dep(tt) m1+
Pi(t) - 2k[ 1 q~jPj(t) sin(e1 - e- 'ij) - 0dt J-1

1 i 2,...M+1 (67)

)del(t) 2- +6
P1Ct +- 2k[ q~jPj(t) sn(Oe - ej- plj)= 0 (68)I dt IJ

r(t)d*(t) 0(9dtr)-" - 0 (69)
dt
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At this point we have shown that the added weight wr(t) effectively compen-

sated for the reference loop phase shift #. However, we have not as yet been

able to find a general solution for the weight equations (64-69). In the next

section we investigate the special case of a single interference and give a

sufficient condition for convergence of the array weights.

IV. Special Case: Single Interference In an N Element Array

With the number of interferers (i) reduced to 1 the input vector (eq.(11))

becomes

x(t) - A Pe +1 P I + N(t) (71)
2 if

where A and B are the amplitudes of the signal and interference respectively.

P. and PI are their respective direction vectors and are defined in equa-

tions (12) and (13).

Following the derivation for the multiple interference case we see that
A2 *-t.

we must diagonalize the desired signal autocorrelation 
matrix (#s'APP )

as in (31). Also, we must use the same unitary diagonalizing matrix Q In order
B2 -t.

to transform the interference autocorrelation matrix (4 *MP PP to the

form of (32) where m-1. Using the definitions of Appendix A (AS), let

v

v2

Q (72)

- v

where: v1 is the eigenvector corresponding to the only non zero sigeonvalue of * s

v2 - vn are the eigenvectors corresponding to the n-I zero eigenvalmee of *5

denotes the transpose conjugate of the vector

By inspection we can see that a proper choice for v1 is:

v Ps t/IPs - 1/A [1 -J G2 .... (. J73)
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Using this knowledge, we get from (31)

As Q OsQ A2 QPsPQ (74)

". ,-~ e-J 2 . .e-"Jn - -
J 12 ..... . .

v1 eJa 2  
• •

. 2  v I  v2  vn

__ , v __ ej n * .

n

(75)

Combining (72), (73), and (75) we see that

!X 0 • •

As  0 0 (76)

0 0-

where from Appendix A (A4) we know

NA2 (77)

Using Appendix A we see that we now can place a restriction on Q such that

A IQ QPPQB2  * t B2  *t (78)
2 2

q11  q 1 2 0 0

q2l q22  0 . (79)

0 0 7-0

0 ..... .......... 0 

where:

- I~vlp*> <v2Pi> (v3P*> . . . . <v P >1 (80)
n

From Appendix A we know that this can be accomplished if we let v I and v2

span the plane defined by P and PI and making the other n-2 elgenvector

orthonormal to the space spanned by vl and v2 . Thus using the diagram below
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radius 4N-

82 A2

V2

V 1 q11 P

ye see that

v2 P IVi>v1  
81P* <P* V>V11

v2 "Ir - <Pvj>vilI8z

Using (79) and (80) we get

q11 " 'l<p*,v1>l2 _" i<p*,p*5>122 (82)

2 N 1(2

where we have also used the fact that 1P. 12 -tp* P N.

Furthermore, using (79) and (80) in conjunction with Appendix B we get

q !2 1<4e ' 2>12 .- - - q,, (83)
22

, .q2 <P1 v2> <v, P> (84)

From Appendix C we know that <PIv 2> Is real and thus (84) is

seen as

Iq2I 1q 2 <,v 2> I<vJP1>I (85)I 2

/q2 1 - / f/rg<v1 ,P*> (86)

t Not tag that we can make A, a real matrix if we eliminate the angle intro-

duced in (86), by inspection using (79) we see that we can define a new Q such

that

Q - A'Q' (87)
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where
Ilar(<Vj,P1*>) 0

A'- 1 (88)

01

Now using Q'n we define AI as

Ani - Qnt'# Qn

qull qnl2

M qn2l qn22 (89)

0 0

where

= q 2 P *>12  (90)qnll = qj ll IPps(0

.2  i~ z e *>12 - N2
qn22 " q22 = r T21- qj, (91)

qn2l , qnl2 ' q'llq 2 2 - 1q121 (92)

Obviously Ani as defined in (89) Is a positive real symmetric matrix.

Also we realize from (75) that

Ane - Qn'#sQn - Q'*sQ a As (94)

As we did in the multiple interference case we let r - Qn'w(t). And, using

(90)-(94) we see that one interference causes the multiple interference system's

weight eqoations (64)-(69) to become

dP1't) + 2k[(qll + + an)P1 (t) + ,qjjq 22 cos(el-e)P 2(t)
]

t dt

2k i)Ilia Pr(t) + b1 ]  (95)

dP2(t) + 2k[Vqllq 22 PI(t) cos(e 2(t) - e1(t))
dt

+ (q22 
+ a2)P 2(t)I F 0 (96)
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dPr(t) + kcam M 2a k~V 1 ri (97)
dt 'r r rVX LJt

Pt)dei (t) + 2k[ q-22q11 sin(02(t) - 01(t))1 2(t)J a 0 (98)

d02(t) -8(t 2k[ /qjjq 22 sin,(0 2(t) - e1(t))F1(t)J - 0 (99)

dTt)

Pr(t)dt -0 (100)

Trying to analyze the convergence of 61(t) and 62(t) ye can premuitiply

(98) and (99) by P2(t) and PI(t) respectively and substract to get

p1(t)P2(t) d(82 ed- 2k iqq 22 [P,
2(t)+p 2

2(t)I sin(02-01) - 0 (101)

or

dt P1(t P2(t) S'(2(102)

Assuming that PI(t) or P2(0) cannot attain a valve of zero over a finite time in~-

terval then the phase difference 82(t) - 01(t) will converge on

82(t) - 81(t) - r- (103)

Using (103) in (98) and (99) we get

P2(t) d02(t0/dt - 0 or d82/dt - 0 (104)

.1Pl(t) d8j(t)/dt - 0 or d01/dt - 0 (105)

It can be shown from (95), (96)t (97) by inspection that in fact PI(t, P2(t0,

*Pr(t) can never attain a steady state value of zero and thus equations (100),*1 (104), (105) hold.

At this point we have shown that the phases of the weights *(t), e1(t),

02(t) converge on a steady state value. Nov using equation (103) io (95),

(96), and (97) we get a linear set of equations for the magnitude of the weights.
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dP,(t)2dt + 2k[(qll + + a )P1 (t) - /q11 q22 P2 (t)
dt

- 2k /A1aPr(t) + b1l  (106)

dP2(t) 2k[ 'q¢11q22 Pt(t) + [q22 + On]P2(t) - 0 (107)

dt

dPr(t) =car2 , - 2ak ,il() (108)

dt r r r

or

il(t) -2k(Cqll + X1 + a ) +2k[ Vq11 q22] -2kav'3- PI(t)

p2(t) - +2k /qllq 2 2  -2k(q 22 + O2)

P3 (t) -2akr /7 0 -2krea2  P3 (t)

2kV'X b1

+ 0

0 (109)

The eigenvalues of the matrix in (109) can be obtained by solving the equation

2 2(A + 2krca)[ +2k(A1 + o + q11 ))(A + 2k(A2 + o - 1l1)

- 4k2q11( 2 -

22 _4 kkr la2(X + 2k(X2 + On q11 )) = 0 (110)

when we used the fact that q2 2  B2 -q

2 q1  n eie 2 -. (1)anb
rearranged to get

(X + 2k(X2 + 2 ))[(X + 2krca 2 )(X + 2k(Al + a - 4kkrXja 2 j

On)) CA+ r n 2( 1 0) kr~i

- 4k2q1 1AI(A + 2kra2(c-)) _ 0 (111)

(111) can be looked upon as an equation for the loci of the three eigenvalues

when qlI varies from 0, when the interference direction is orthogonal to the

desired signal direction, to a value equals X2, when both direction are the
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M-2same. Notice that with no interference X2  2-

zero and (111) 
reduces to

(A + 2k 2)[(X + 2krca2 )(X +2k(X 1 + a)) - kkra2] M 0

nr (112)

This is exactly what ye had in 13). Also if for the orthogonal case ql 0 but

X2 * 0 then from (111)

2 + 2)( +2k( 1 + o)) - 4kk a 21 a 0(X +2k(X2 + 2n + 2krca2 A on)2 rIa -0(113)

so that for this case the interference has the effect of changing one of the

2 a2).oecneslshwtate-,oanvalues from -2kon to - 2k(X 2 + n can easily ho . the

other two eigenvalues an unconditionally real and they are both negative when

c( 1+ On) > 1. For qll - X2 we get after rearranging the terms of (111). (See

Appendix D).
(A + 2k 2)[(X + 2krca 2 )(A +2k(X 1 + X2 + 4kkrX18 2 ] W 0

O [ na r (114)

Again it can be easily shown that the two eigenvalues that correspond to the

second factor are unconditionally real and both ate negative if2
c(a + 2 + on) > 1 (115)

The condition is obviously easier to sattsfy than the previous condition we

obtained with qlj - 0. Comparing (113) with (114) we notice the difference

in the second factor of the first term in the square parenthesis where we

hdve X1 + X2 representing the sum of power of both the interference and

.j 1the design signal instead of X1 representing the power of the desired signal

only. The first terms in the parenthesis remain unchanged since the reference

generating loop is not affected by the interference.

in order to get an Idea of what happens to the eigenvalues as the inter-

ference direction varies between the orthogonal and colinear directions of the

desired signal we can plot the root loci of (111) keeping in mind that qj1
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increases from zero to A2 as the direction of the interference moves from an or-

thogonal to a colinear direction. Doing this we can prove that the elgenvalues will

c(A + C2 )
always have a negative real part as long as - > 1. The proof is given in

X1
Appendix E.

The steady state values of the weights are derived by setting the left-

hand side of (109) to zero and evaluating. Doing this

PI(t)

lim P2(t) -1
t P3(. 2k~q22(c(on + Xj) - Xj) + an(c(q 11 +on + Xl)- Xi)I

P3(t)

2 +c k_ jq2 2c~q22 + On] +cN2 +q On2kra

+c qjq22 [c(x + n ql )-Xij kra

[q2E+On]I2 (q22+ On)(Al+ an)+ Onq22]

kr

,i-2k V Ibl

0 (121)

0

or

+iXA-b cfq22 + 02
lim P1(t) n (122)

G

l.m Pr(e) = |bq22 +(123)St.4. G
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where

222
G = q22[c(O7 + Al) -II + Ou[c(qll +on + d - A11 (125)

To conclude we notice that under the conditions specified the added com-

plex weight wr(t) convergeson a steady state value which cancels the reference

loop phase shift #. By doing this we have shown that the result is the elimi-

nation of the weight cycling.

We have also shown that an increase in the interference power will make one

of the eigenvalues more negative, thus giving a stabilizing effect to the

system. In general, we see that the array weight's convergence rates depend on

the power as well as the relative directions of the interference and desired

signal.

V. The Uncompensated Scheme With Single Interference

The uncompensated scheme will be considered as a special case of the com-

pensated scheme with Pr(t) - I and *(t) - 0. Using this in (56) and (57)

respectively we get

dP1(t) 2
dt + 2k(ql! + A, + an)Pl(t) + 2kq12 P2 (t) cos(e 1(t) - 02 (t))

- 2ka /A- cos * (126)

dP2(t) 2 ) 17
dt + 2kq 2 lP(t) cos(0 2 (t) - e1(t)) + 2k(q2 2 + On)P2(t) = 0 (127)

Similarly (60) and (59) become

dez (t)--2k si* (18
P1 (t)0dt + 2kq 12P2 (t) sin(el(t) e2 (t)) 2ka V I sin (128)

.de2(t)

P2( dt 2kq21Pl(t) sin(el(t) - O2 (t)) 
= 0 (129)

A general solution for the differential equations of (126),(127),(128), and

(129) has not yet been found. However, for the case when the direction vector
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of the interferer and the desired signal are othogonal (i.e., <PIPS> - 0)

we can reduce the problem. For this case we get from (82), (83), and (84)

that

q1 - q2 1 * q12 " 0 (130)

q22  N

22Substituting (130) and (131) into (126), (127), (128), and (129) we get

dP1(t) 2

dt + 2k(k1 + on)Pl(t) - 2ka cos * (131)

dP2(t) + 2k(q22 + on)P 2(t) (133)

dt

de (t)
- 2ka Al sin (134)

de2(t) (135)
2(t)- 0

From the solution of (133) we see that the weight Y2(t) - P2(t)exp[-Je 2(t)]

will exponentially decay to a steady state'value of zero. Also we note that

(132) and (134) are the equivalent to the weight equations derived by DeCarlo

[41 for the interference free case. (n.b. equations (30) and (33) of reference

[4)). In his solution DeCarlo showed that the magnitude of the weight

(Il(t)l - Pl(t)) would converge on a steady state value proportional to the

cosine of the phase offset #. However the phase of the weight (arg(yl(t))=

e1(t)) will oscillate at a radian frequency proportional to the tangent

of the phase offset *.

To conclude we see that when the direction vector of the interference isI orthogonal to that of the desired signal, the interference will have no effect on

the system weights. And we see that the weights will approach a limit cycle in

exactly the same fashion as DiCarlo 141 predicted for the no Interference case.
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VI. Conclusion

In this paper we have devised a method by which we have been able to better

study the effects of interference on the array weights of an adaptive array Sys-

tern. Using this method we have further analyzed Bar-Ness's compensation scheme

[3] and have shown that for a multiple interference case the reference loop phase

shift is effectively compensated for. We have also been able to show that for

the single Interference case the array weights will converge on a steady-state

value. For the uncompensated Compton scheme [21 it was demonstrated that the

array weights will cycle for the special case of one interference with a direction

vector orthogonal to that of the desired signal. Future work is planned for the

study of a general solution for the multiple interference case with Bar-Ness's

Compensation Scheme as well as a general solution for the single interfernece case

with Compton's scheme. Furtherimore, analysis is planned for the signal to noise

plus interference ratio of Bar-Ness's scheme in a single interference environment.
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Appendix A

The desired signal's auto correlation matrix 48 Is defined in (15)

as

to M A2~ P t .A 2  I *i"G2 eJm

2C

* . (Al)

to Is Hermetian having rank equal to one. Therefore, a unitary matrix

exists such that As - Q'$5Q is a diagonal matrix with only one non zero

element. Thus

* . (A2)

0 0

Since we have used a similarity transformation to obtain A ~.we see that:

TraceffsJ Trace[A51 (A3)

Thus by inspection of (Ml) and (AZ) we get

N2
- __ (A4)

2

We can more formally define the diagonalizing matrix Q as

v2 (AS)

Where since Os is Hermetian, 7j(i-Il to n) form an orthonormal set of
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elgenvectors where v, is the eigenvector corresponding to the oat nonzero

eigenvalue of #a and

V, - rS/IrS1. (A6)

Also, vi(i-2 to N) are the eLgenvectors corresponding to the N-I zero ege-

nvalues of 4s.

Now, turning our attention to the N interferers, we see that the autocor-

relation matrix 0i(I - 1 to H) of each interference is defined in (16) as
i

-ibi -Jbi n
S2 I eJ 2 .

• (A7)

Jbi
e n

Each matrix 41 (1 1 1 to M) is Rermetlan of rank 1. Thus we see that a matrix

defined by 0 *, will also be Hersetian and have rank c K. Now leaving v1
i-I I

alone so that (A2) is always satisfied we can see that the vectors vi (i - 2

to K+I) can always be made so that vj(J - I to 1I) will span the M-space
M

spanned by . And, the eigenvectors vkik M 1+2 to N) can be made ortho-
il I

gonal to that M-spacr as well as the direction of v1 . By doing this we can get
K

a transformation of -he matrix 0 il such that
i-I

Al - '[qi • (A8)

i-I H+ +I
0i 0

0 -1

where since this a similarity transformation Al must be Hermetian and there-

fare
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qj positive and real i- j (A9)

qjjqj - complexI (AO

For i j we can write qij in the form

qj qj e (All)

where
q+j - Iqijl (A12)

'pij - arg[qjj (A13)
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Appendix B

From (83)

Substituting for v2 from (81)

L2 I~ l*, P <P ~ v >vI12 (52)

or

B2 <P1*,P1*> - P ,v><*V 12(3
q2 2 PI - <I* > vii

Evaluating the demoninator

1 (14)
-P <P I*,vi I [(P I* .(P I*,V 1>V1, P I -<.P *,v1>v1>1

7

- <p1*,p1*> -<P 1*,v1><vj,P1*>

+ (P1*,v1><P1*,v1 >J T (B5)

or

Pt - Pi*,vi>viI - [<PI *,P I*> Or (*,vj><v 1 ,,P*>*
2* (36)

Substituting (86) into (83) we get

- 2 [<- > < O*< v~ (17)

B2 [p*,P *> - '1'I. 1

[<I j<Ipv> 2  (18)

But -P N (39)

2A ~ (Pv>12  qt (110)

Thus (B8) becomes

q2 __NB - q1 B1
2
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Appendix C

Using the definition of v2 from (82) we get

<P *,V >  <PI* P - <PI* VI>VI> (CI)
I P*-<PI*,v >VI I

or > <P*'PI* > - <PI* VI>*<PI* VI> (C2)

<PIv2> - Ipi* - <pi* VI>VI

Substituting for the demoninator from (B6) and using (110) we get

<PI*,v2 - [<P *,PI*> - <PI* VI>*<P * V>] (C3)

1

- [N - I<P * V>12]T  (C4)

Thus from (C4) we see that <PI*,v2 > will always be a real number.

1
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Appendix D

Substituting q1 I - A2 in (111), we get after rearranging terms

2+2)( 2 2
(A + 2krca 2 )[(A + 2k(12 + X + 2k(X1 + an)) + 4k2AIA2 1

- 4kkrlia2 (A + 2k(X2 + O2)) + 8k2 iX2 kra
2 

- 0 (DI)

or

(X + 2krca
2 )[X2 + 2k(Al + 2 + 2)x + 4k2o(A1 + 2 2)

+ 4k2(o2)2 1 - 4kkrAia 2 (X + 2k - 0 (D2)

Factoring the first and rearranging we finally get

(X + 2ka2)[(X + 2krCa2 )(A + 2k(A. + X2 + 2 4kkr Xa 2 ]  0
n .

(3)
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Appendix E

We know by solving (113) that the roots of (111) for q11 - 0 are uncon-

ditionally real and negative if c(X1 + a2)/X1 > 1. Thus under this condi-

tion the root loci of (111) has 3 poles and one zero all on the negative real

axis. We are only interested in the roots, for 0 < q1 < X2 and we realize from

(114) that the roots of (111) as q1I approaches X2 will be unconditionally

real and negative under the previous specified condition. Below are the 4

possible paths which the root loci of (111) can follow according to the above

specifications

F3
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where the arrows point in the direction of increasing q1l. The poles for qll - 0

are defined by the roots of (113) and from (111) the zero is at -2kra2(c - 1).

Obviously since we see from the above root loci that if for the maximum

value of qjl - A2 the roots of (111) are negative and real so that for any value

of qll < A2 the root must always have a negative real part.

As an example let's assume the following values
2

c - 1.2 k 50 On = .001

a - 8.33 kr  25

b - 1.6262 A 1  1 A2 - 1/2

From (113) the equation for the roots when qlj - 0 is:

(X -50.1)[(X + 4166.33)(A + 100.1) - 347,194.451 (El)

which has roots at

X - -50, -16.4, -4249.9

Notice also that the zero for this root loci is found from (111) to be -694.43.

As we increase qii to X2 - 1/2 from (114) we get roots at X - -.1, -65.4, -4251.

The root loci is plotted as

-4249.9 -694.43 -50 -16.4 0

-4251 -654-0.1 q 1

Notice from (113) and (El) that an increase in interference power will only

affect the eigenvalue at A - -50. In fact an increase in power will cause

this eigenvalue to become more negative, thus helping to stabilize the system.
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Figure 1 Quadrature Weighted Adaptive Array
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List of Symbols - Appendix F

A desired signal's amplitude

a constant dependent on the limiter level and filter attenuation of the

reference extraction loop

Bi ith interference amplitude

bl compensation scheme limiter level

bij phase of the ith interference at the jth element

c compensation loop weighting factor

d(t) reference signal

E[ I denotes expected value

e(t) error signal for array LMS algorithm

el(t) error signal of compensation scheme

k gain constant for LMS algorithm in array weights

kr gain constant for LMS algorithm in compensation loop

L distance between lot and jth antenna element

M number of interferers

N number of array elements

Pi(t) magnitude of linear transformed array weights

P T  ith interference incoming phase vector (0 x N)

Pr(t) magnitude of the complex compensation weight wr(t)

T  
desired signal's phase vector (I x N)

Q diagonalizing matrix [N x NJ

qij components of Al

( + ij magnitude of qij

Rx  input signal autocorrelation matrix

Rxd input-reference signal cross-correlation matrix

t denotes transpose

(Continued)
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List of Symbols - Appena. i

(Continued)

vi  - eigenvectors of *s used as vector components of Q

wT(t) - complex antenna element weight vector (I x N)

wi(t) - components of wT(t) corresponding to the ith complex array weight

wr(t) - complex reference extraction loop compensation weight

xT(t) - system's input vector (1 x N)

xii(t) - inphase component of the ith array element input

XiQ(t) - quadrature component of the i th array element input

y(t) - input to the compensation scheme

ai - phase of desired signal at the j th element

rT(t) = Q'w(t)

- uncoupled complex array weight vector (1 x N)

Yi - components of rT(t) corresponding to the ith complex transformed

array weight

0i  - phase of linear transformed array weight

As " Q' Os Q

- diagonalized desired signal's autocorrelation matrix (N x N)

M
A1 I Z Q' OniQ

- sum of the diagonalized interference signals autocorrelation

matrices (N x N)

1 NA2 /2 ; only nozero component of A

s

A2  =NB 2/2 ; trace of A I

Pij - angle of the complex value qij1* - phase shift introduced by uncompensated reference signal loop

411 - ith interference autocorrelation matrix (N x N)

48 - desired signal's autocorrelation matrix (N x N)
( t) - phase of the complex compensation weight wrt

(Continued)
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List of Symbols - Appendix F
(Continued)

Idenotes magnitude

< > denotes inner produce

* denotes conjugate

denotes Cransponse conjugate
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